
Mesa Documentation
Release .1

Project Mesa Team

May 15, 2023

CONTENTS

1 Features 3

2 Using Mesa 5

3 Contributing back to Mesa 7

4 Mesa Packages 9
4.1 Mesa Overview . 9

4.1.1 Mesa Modules . 9
4.1.1.1 Modeling modules . 10
4.1.1.2 Analysis modules . 11
4.1.1.3 Visualization modules . 12

4.2 Introductory Tutorial . 12
4.2.1 Tutorial Description . 12
4.2.2 Model Description . 13

4.2.2.1 Tutorial Setup . 13
4.2.3 Building the Sample Model . 13

4.2.3.1 Create New Folder/Directory . 13
4.2.3.2 Creating Model With Jupyter Notebook . 14
4.2.3.3 Creating Model With Script File (IDE, Text Editor, Colab, etc.) 14

4.2.4 Import Dependencies . 14
4.2.4.1 Create Agent . 14
4.2.4.2 Create Model . 15
4.2.4.3 Adding the Scheduler . 15
4.2.4.4 Running the Model . 16

4.2.4.4.1 Exercise . 17
4.2.4.5 Agent Step . 18
4.2.4.6 Running your first model . 18
4.2.4.7 Adding space . 21
4.2.4.8 Collecting Data . 24
4.2.4.9 Batch Run . 29
4.2.4.10 Happy Modeling! . 34

4.3 Advanced Tutorial . 34
4.3.1 Adding visualization . 34

4.3.1.1 Grid Visualization . 34
4.3.1.2 Changing the agents . 37
4.3.1.3 Adding a chart . 38

4.3.2 Building your own visualization component . 40
4.3.2.1 Client-Side Code . 41
4.3.2.2 Server-Side Code . 43

i

4.3.3 Happy Modeling! . 45
4.4 Best Practices . 45

4.4.1 Model Layout . 45
4.4.2 Randomization . 45

4.5 Useful Snippets . 46
4.5.1 Models with Discrete Time . 46
4.5.2 Using `numpy.random` . 46
4.5.3 Using multi-process `batch_run` on Windows . 47

4.6 APIs . 47
4.6.1 Base Classes . 47
4.6.2 Mesa Time Module . 48
4.6.3 Mesa Space Module . 51
4.6.4 Mesa Data Collection Module . 65
4.6.5 Batchrunner . 66
4.6.6 Parameters . 67
4.6.7 Returns . 67
4.6.8 Visualization . 69

4.6.8.1 Mesa Visualization Module . 69
4.6.8.2 ModularServer . 70
4.6.8.3 Text Visualization . 73
4.6.8.4 Modules . 74

4.6.8.4.1 Modular Canvas Rendering . 74
4.6.8.4.2 Chart Module . 75

4.7 “How To” Mesa Packages . 76
4.7.1 User Guide . 77
4.7.2 Package Development: A “How-to Guide” . 78

4.8 References . 79

5 Indices and tables 81

Python Module Index 83

Index 85

ii

Mesa Documentation, Release .1

Mesa is an Apache2 licensed agent-based modeling (or ABM) framework in Python.

Mesa allows users to quickly create agent-based models using built-in core components (such as spatial grids and agent
schedulers) or customized implementations; visualize them using a browser-based interface; and analyze their results
using Python’s data analysis tools. Its goal is to be the Python 3-based counterpart to NetLogo, Repast, or MASON.

Above: A Mesa implementation of the Schelling segregation model, being visualized in a browser window and analyzed
in a Jupyter notebook.

CONTENTS 1

https://github.com/projectmesa/mesa/actions
https://codecov.io/gh/projectmesa/mesa
https://matrix.to/#/
https://github.com/projectmesa/mesa/

Mesa Documentation, Release .1

2 CONTENTS

CHAPTER

ONE

FEATURES

• Modular components

• Browser-based visualization

• Built-in tools for analysis

3

Mesa Documentation, Release .1

4 Chapter 1. Features

CHAPTER

TWO

USING MESA

Getting started quickly:

pip install mesa

To launch an example model, clone the repository folder and invoke mesa runserver for one of the examples/
subdirectories:

mesa runserver examples/wolf_sheep

For more help on using Mesa, check out the following resources:

• Mesa Introductory Tutorial

• Mesa Advanced Tutorial

• GitHub Issue Tracker

• Email list

• PyPI

5

https://github.com/projectmesa/mesa
tutorials/intro_tutorial.html
tutorials/adv_tutorial.html
https://github.com/projectmesa/mesa/issues
https://groups.google.com/d/forum/projectmesa
https://pypi.python.org/pypi/Mesa/

Mesa Documentation, Release .1

6 Chapter 2. Using Mesa

CHAPTER

THREE

CONTRIBUTING BACK TO MESA

If you run into an issue, please file a ticket for us to discuss. If possible, follow up with a pull request.

If you would like to add a feature, please reach out via ticket or the email list for discussion. A feature is most likely to
be added if you build it!

• Contributors guide

• Github

7

https://github.com/projectmesa/mesa/issues
https://github.com/projectmesa/mesa/issues
https://groups.google.com/d/forum/projectmesa
https://github.com/projectmesa/mesa/blob/main/CONTRIBUTING.rst
https://github.com/projectmesa/mesa/

Mesa Documentation, Release .1

8 Chapter 3. Contributing back to Mesa

CHAPTER

FOUR

MESA PACKAGES

ABM features users have shared that you may want to use in your model

• See the Packages

• Mesa-Packages

4.1 Mesa Overview

Mesa is a modular framework for building, analyzing and visualizing agent-based models.

Agent-based models are computer simulations involving multiple entities (the agents) acting and interacting with
one another based on their programmed behavior. Agents can be used to represent living cells, animals, individual
humans, even entire organizations or abstract entities. Sometimes, we may have an understanding of how the individual
components of a system behave, and want to see what system-level behaviors and effects emerge from their interaction.
Other times, we may have a good idea of how the system overall behaves, and want to figure out what individual
behaviors explain it. Or we may want to see how to get agents to cooperate or compete most effectively. Or we may
just want to build a cool toy with colorful little dots moving around.

4.1.1 Mesa Modules

Mesa is modular, meaning that its modeling, analysis and visualization components are kept separate but intended to
work together. The modules are grouped into three categories:

1. Modeling: Modules used to build the models themselves: a model and agent classes, a scheduler to determine
the sequence in which the agents act, and space for them to move around on.

2. Analysis: Tools to collect data generated from your model, or to run it multiple times with different parameter
values.

3. Visualization: Classes to create and launch an interactive model visualization, using a server with a JavaScript
interface.

9

https://github.com/projectmesa/mesa/wiki

Mesa Documentation, Release .1

4.1.1.1 Modeling modules

Most models consist of one class to represent the model itself; one class (or more) for agents; a scheduler to handle time
(what order the agents act in), and possibly a space for the agents to inhabit and move through. These are implemented
in Mesa’s modeling modules:

• mesa.Model, mesa.Agent

• mesa.time

• mesa.space

The skeleton of a model might look like this:

import mesa

class MyAgent(mesa.Agent):
def __init__(self, name, model):

super().__init__(name, model)
self.name = name

def step(self):
print("{} activated".format(self.name))
Whatever else the agent does when activated

class MyModel(mesa.Model):
def __init__(self, n_agents):

super().__init__()
self.schedule = mesa.timeRandomActivation(self)
self.grid = mesa.space.MultiGrid(10, 10, torus=True)
for i in range(n_agents):

a = MyAgent(i, self)
self.schedule.add(a)
coords = (self.random.randrange(0, 10), self.random.randrange(0, 10))
self.grid.place_agent(a, coords)

def step(self):
self.schedule.step()

If you instantiate a model and run it for one step, like so:

model = MyModel(5)
model.step()

You should see agents 0-4, activated in random order. See the tutorial or API documentation for more detail on how to
add model functionality.

To bootstrap a new model install mesa and run mesa startproject

10 Chapter 4. Mesa Packages

apis/time.html
apis/space.html
tutorials/intro_tutorial.html

Mesa Documentation, Release .1

4.1.1.2 Analysis modules

If you’re using modeling for research, you’ll want a way to collect the data each model run generates. You’ll probably
also want to run the model multiple times, to see how some output changes with different parameters. Data collection
and batch running are implemented in the appropriately-named analysis modules:

• mesa.datacollection

• mesa.batchrunner

You’d add a data collector to the model like this:

import mesa

...

class MyModel(mesa.Model):
def __init__(self, n_agents):

...
self.dc = mesa.DataCollector(model_reporters={"agent_count":

lambda m: m.schedule.get_agent_count()},
agent_reporters={"name": lambda a: a.name})

def step(self):
self.schedule.step()
self.dc.collect(self)

The data collector will collect the specified model- and agent-level data at each step of the model. After you’re done
running it, you can extract the data as a pandas DataFrame:

model = MyModel(5)
for t in range(10):

model.step()
model_df = model.dc.get_model_vars_dataframe()
agent_df = model.dc.get_agent_vars_dataframe()

To batch-run the model while varying, for example, the n_agents parameter, you’d use the batchrunner:

from mesa.batchrunner import BatchRunner

parameters = {"n_agents": range(1, 20)}
batch_run = BatchRunner(MyModel, parameters, max_steps=10,

model_reporters={"n_agents": lambda m: m.schedule.get_agent_
→˓count()})
batch_run.run_all()

As with the data collector, once the runs are all over, you can extract the data as a data frame.

4.1. Mesa Overview 11

apis/datacollection.html
apis/batchrunner.html
http://pandas.pydata.org/

Mesa Documentation, Release .1

batch_df = batch_run.get_model_vars_dataframe()

4.1.1.3 Visualization modules

Finally, you may want to directly observe your model as it runs. Mesa’s main visualization tool uses a small local web
server to render the model in a browser, using JavaScript. There are different components for drawing different types
of data: for example, grids for drawing agents moving around on a grid, or charts for showing how some data changes
as the model runs. A few core modules are:

• mesa.visualization.ModularVisualization

• mesa.visualization.modules

To quickly spin up a model visualization, you might do something like:

import mesa

def agent_portrayal(agent):
portrayal = {"Shape": "circle",

"Filled": "true",
"Layer": 0,
"Color": "red",
"r": 0.5}

return portrayal

grid = mesa.visualization.CanvasGrid(agent_portrayal, 10, 10, 500, 500)
server = mesa.visualization.ModularServer(MyModel,

[grid],
"My Model",
{'n_agents': 10})

server.launch()

This will launch the browser-based visualization, on the default port 8521.

4.2 Introductory Tutorial

4.2.1 Tutorial Description

Mesa is a Python framework for agent-based modeling. This tutorial will assist you in getting started. Working through
the tutorial will help you discover the core features of Mesa. Through the tutorial, you are walked through creating a
starter-level model. Functionality is added progressively as the process unfolds. Should anyone find any errors, bugs,
have a suggestion, or just are looking for clarification, let us know!

The premise of this tutorial is to create a starter-level model representing agents exchanging money. This exchange of
money affects wealth. Next, space is added to allow agents to move based on the change in wealth as time progresses.

Two of Mesa’s analytic tools: the data collector and batch runner will be used to examine this movement. After that
an interactive visualization is added which allows model viewing as it runs.

Finally, the creation of a custom visualization module in JavaScript is explored.

12 Chapter 4. Mesa Packages

https://github.com/projectmesa/mesa
https://en.wikipedia.org/wiki/Agent-based_model
https://github.com/projectmesa/mesa/issues

Mesa Documentation, Release .1

4.2.2 Model Description

This is a starter-level simulated agent-based economy. In an agent-based economy, the behavior of an individual eco-
nomic agent, such as a consumer or producer, is studied in a market environment. This model is drawn from the field
econophysics, specifically a paper prepared by Drăgulescu et al. for additional information on the modeling assump-
tions used in this model. [Drăgulescu, 2002].

The assumption that govern this model are:

1. There are some number of agents.

2. All agents begin with 1 unit of money.

3. At every step of the model, an agent gives 1 unit of money (if they have it) to some other agent.

Even as a starter-level model the yielded results are both interesting and unexpected to individuals unfamiliar with it
the specific topic. As such, this model is a good starting point to examine Mesa’s core features.

4.2.2.1 Tutorial Setup

Create and activate a virtual environment. Python version 3.8 or higher is required.

Install Mesa:

pip install mesa

Install Jupyter Notebook (optional):

pip install jupyter

Install Visualization Tools:

pip install matplotlib

4.2.3 Building the Sample Model

After Mesa is installed a model can be built. A jupyter notebook is recommended for this tutorial, this allows for small
segments of codes to be examined one at a time. As an option this can be created using python script files.

Good Practice: Place a model in its own folder/directory. This is not specifically required for the starter_model, but as
other models become more complicated and expand multiple python scripts, documentation, discussions and notebooks
may be added.

4.2.3.1 Create New Folder/Directory

• Using operating system commands create a new folder/directory named ‘starter_model’.

• Change into the new folder/directory.

4.2. Introductory Tutorial 13

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Mesa Documentation, Release .1

4.2.3.2 Creating Model With Jupyter Notebook

Write the model interactively in Jupyter Notebook cells.

Start Jupyter Notebook:

jupyter notebook

Create a new Notebook named money_model.ipynb (or whatever you want to call it).

4.2.3.3 Creating Model With Script File (IDE, Text Editor, Colab, etc.)

Create a new file called money_model.py (or whatever you want to call it)

Code will be added as the tutorial progresses.

4.2.4 Import Dependencies

This includes importing of dependencies needed for the tutorial.

[1]: import mesa

Data visualization tool.
import matplotlib.pyplot as plt

Has multi-dimensional arrays and matrices. Has a large collection of
mathematical functions to operate on these arrays.
import numpy as np

Data manipulation and analysis.
import pandas as pd

4.2.4.1 Create Agent

First create the agent. As the tutorial progresses, more functionality will be added to the agent.

Background: Agents are the individual entities that act in the model. It is a good modeling practice to make certain
each Agent can be uniquely identified.

Model-specific information: Agents are the individuals that exchange money, in this case the amount of money an
individual agent has is represented as wealth. Additionally, agents each have a unique identifier.

Code implementation: This is done by creating a new class (or object) that extends mesa.Agent creating a subclass
of the Agent class from mesa. The new class is named MoneyAgent. The technical details about the agent object can
be found in the mesa repo.

The MoneyAgent class is created with the following code:

[2]: class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
Pass the parameters to the parent class.
super().__init__(unique_id, model)

(continues on next page)

14 Chapter 4. Mesa Packages

http://jupyter.org/
https://github.com/projectmesa/mesa/blob/main/mesa/agent.py

Mesa Documentation, Release .1

(continued from previous page)

Create the agent's variable and set the initial values.
self.wealth = 1

4.2.4.2 Create Model

Next, create the model. Again, as the tutorial progresses, more functionality will be added to the model.

Background: The model can be visualized as a grid containing all the agents. The model creates, holds and manages
all the agents on the grid. The model evolves in discrete time steps.

Model-specific information: When a model is created the number of agents within the model is specified. The model
then creates the agents and places them on the grid. The model also contains a scheduler which controls the order in
which agents are activated. The scheduler is also responsible for advancing the model by one step. The model also
contains a data collector which collects data from the model. These topics will be covered in more detail later in the
tutorial.

Code implementation: This is done by creating a new class (or object) that extends mesa.Model creating a subclass
of the Model class from mesa. The new class is named MoneyModel. The technical details about the agent object can
be found in the mesa repo.

The MoneyModel class is created with the following code:

[3]: class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N):
self.num_agents = N
Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)

4.2.4.3 Adding the Scheduler

Now the model will be modified to add a scheduler.

Background: The scheduler controls the order in which agents are activated, causing the agent to take their defined
action. The scheduler is also responsible for advancing the model by one step. A step is the smallest unit of time in the
model, and is often referred to as a tick. The scheduler can be configured to activate agents in different orders. This
can be important as the order in which agents are activated can impact the results of the model [Comer2014]. At each
step of the model, one or more of the agents – usually all of them – are activated and take their own step, changing
internally and/or interacting with one another or the environment.

Model-specific information: A new class is named RandomActivationByAgent is created which extends mesa.
time.RandomActivation creating a subclass of the RandomActivation class from Mesa. This class activates all
the agents once per step, in random order. Every agent is expected to have a stepmethod. The step method is the action
the agent takes when it is activated by the model schedule. We add an agent to the schedule using the add method;
when we call the schedule’s step method, the model shuffles the order of the agents, then activates and executes each
agent’s step method. The scheduler is then added to the model.

Code implementation: The technical details about the timer object can be found in the mesa repo. Mesa offers a few
different built-in scheduler classes, with a common interface. That makes it easy to change the activation regime a
given model uses, and see whether it changes the model behavior. The details pertaining to the scheduler interface can
be located the same mesa repo.

4.2. Introductory Tutorial 15

https://github.com/projectmesa/mesa/blob/main/mesa/model.py
https://github.com/projectmesa/mesa/blob/main/mesa/time.py
https://github.com/projectmesa/mesa/blob/main/mesa/time.py

Mesa Documentation, Release .1

With that in mind, the MoneyAgent code is modified below to visually show when a new agent is created. The Mon-
eyModel code is modified by adding the RandomActivation method to the model. with the scheduler added looks like
this:

[4]: class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
Pass the parameters to the parent class.
super().__init__(unique_id, model)

Create the agent's attribute and set the initial values.
self.wealth = 1

def step(self):
The agent's step will go here.
For demonstration purposes we will print the agent's unique_id
print(f"Hi, I am an agent, you can call me {str(self.unique_id)}.")

class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N):
self.num_agents = N
Create scheduler and assign it to the model
self.schedule = mesa.time.RandomActivation(self)

Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)
Add the agent to the scheduler
self.schedule.add(a)

def step(self):
"""Advance the model by one step."""

The model's step will go here for now this will call the step method of each␣
→˓agent and print the agent's unique_id

self.schedule.step()

4.2.4.4 Running the Model

A basic model has now been created. The model can be run by creating a model object and calling the step method.
The model will run for one step and print the unique_id of each agent. You may run the model for multiple steps by
calling the step method multiple times.

Note: If you are using .py (script) files instead of .ipynb (Jupyter), the common convention is to have a run.py in
the same directory as your model code. You then (1) import the MoneyModel class, (2) create a model object and (3)
run it for a few steps. As shown below:

from money_model import MoneyModel

(continues on next page)

16 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

(continued from previous page)

starter_model = MoneyModel(10)
starter_model.step()

Create the model object, and run it for one step:

[5]: starter_model = MoneyModel(10)
starter_model.step()

Hi, I am an agent, you can call me 5.
Hi, I am an agent, you can call me 3.
Hi, I am an agent, you can call me 4.
Hi, I am an agent, you can call me 6.
Hi, I am an agent, you can call me 7.
Hi, I am an agent, you can call me 8.
Hi, I am an agent, you can call me 9.
Hi, I am an agent, you can call me 1.
Hi, I am an agent, you can call me 2.
Hi, I am an agent, you can call me 0.

[6]: # Run this step overnight and see what happens! Notice the order of the agents changes␣
→˓each time.
starter_model.step()

Hi, I am an agent, you can call me 2.
Hi, I am an agent, you can call me 1.
Hi, I am an agent, you can call me 3.
Hi, I am an agent, you can call me 0.
Hi, I am an agent, you can call me 8.
Hi, I am an agent, you can call me 9.
Hi, I am an agent, you can call me 4.
Hi, I am an agent, you can call me 7.
Hi, I am an agent, you can call me 6.
Hi, I am an agent, you can call me 5.

4.2.4.4.1 Exercise

Modifying the code below to have every agent print out its wealth when it is activated.

[7]: class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
Pass the parameters to the parent class.
super().__init__(unique_id, model)

Create the agent's variable and set the initial values.
self.wealth = 1

def step(self):
The agent's step will go here.
FIXME: Need to print the agent's wealth
print(f"Hi, I am an agent and I am broke!")

4.2. Introductory Tutorial 17

Mesa Documentation, Release .1

Create a model for 12 Agents, and run it for a few steps to see the output.

[8]: # Fixme: Create the model object, and run it

4.2.4.5 Agent Step

Returning back to the MoneyAgent the actual step process is now going to be created.

Background: This is where the agent’s behavior as it relates to each step or tick of the model is defined.

Model-specific information: In this case, the agent will check its wealth, and if it has money, give one unit of it away
to another random agent.

Code implementation: The agent’s step method is called by the scheduler during each step of the model. To allow
the agent to choose another agent at random, we use the model.random random-number generator. This works just
like Python’s random module, but with a fixed seed set when the model is instantiated, that can be used to replicate a
specific model run later.

To pick an agent at random, we need a list of all agents. Notice that there isn’t such a list explicitly in the model. The
scheduler, however, does have an internal list of all the agents it is scheduled to activate.

With that in mind, we rewrite the agent step method as shown below:

[9]: import copy

class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
Pass the parameters to the parent class.
super().__init__(unique_id, model)

Create the agent's variable and set the initial values.
self.wealth = 1

def step(self):
Verify agent has some wealth
if self.wealth > 0:

other_agent = self.random.choice(self.model.schedule.agents)
if other_agent is not None:

other_agent.wealth += 1
self.wealth -= 1

4.2.4.6 Running your first model

With that last piece in hand, it’s time for the first rudimentary run of the model.

If you’ve written the code in its own script file (money_model.py or a different name) you can now modify your
run.py or even launch a Jupyter Notebook. You then just follow the same three steps of (1) import your model class
MoneyModel, (2) create the model object and (3) run it for a few steps. If you wrote the code in one Notebook then
step 1, importing, is not necessary.

from money_model import MoneyModel

18 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

Now let’s create a model with 10 agents, and run it for 10 steps.

[10]: model = MoneyModel(10)
for i in range(10):

model.step()

Next, we need to get some data out of the model. Specifically, we want to see the distribution of the agent’s wealth. We
can get the wealth values with list comprehension, and then use matplotlib (or another graphics library) to visualize the
data in a histogram.

If you are running from a text editor or IDE, you’ll also need to add this line, to make the graph appear.

plt.show()

[11]: # For a jupyter notebook add the following line:
%matplotlib inline

The below is needed for both notebooks and scripts
import matplotlib.pyplot as plt

agent_wealth = [a.wealth for a in model.schedule.agents]
plt.hist(agent_wealth)

[11]: (array([4., 0., 0., 3., 0., 0., 2., 0., 0., 1.]),
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.]),
<BarContainer object of 10 artists>)

You’ll should see something like the distribution above. Yours will almost certainly look at least slightly different, since
each run of the model is random, after all.

4.2. Introductory Tutorial 19

Mesa Documentation, Release .1

To get a better idea of how a model behaves, we can create multiple model runs and see the distribution that emerges
from all of them. We can do this with a nested for loop:

[12]: all_wealth = []
This runs the model 100 times, each model executing 10 steps.
for j in range(100):

Run the model
model = MoneyModel(10)
for i in range(10):

model.step()

Store the results
for agent in model.schedule.agents:

all_wealth.append(agent.wealth)

plt.hist(all_wealth, bins=range(max(all_wealth) + 1))

[12]: (array([433., 307., 146., 69., 34., 9., 2.]),
array([0., 1., 2., 3., 4., 5., 6., 7.]),
<BarContainer object of 7 artists>)

This runs 100 instantiations of the model, and runs each for 10 steps. (Notice that we set the histogram bins to be
integers, since agents can only have whole numbers of wealth). This distribution looks a lot smoother. By running the
model 100 times, we smooth out some of the ‘noise’ of randomness, and get to the model’s overall expected behavior.

This outcome might be surprising. Despite the fact that all agents, on average, give and receive one unit of money every
step, the model converges to a state where most agents have a small amount of money and a small number have a lot of
money.

20 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

4.2.4.7 Adding space

Many ABMs have a spatial element, with agents moving around and interacting with nearby neighbors. Mesa currently
supports two overall kinds of spaces: grid, and continuous. Grids are divided into cells, and agents can only be on a
particular cell, like pieces on a chess board. Continuous space, in contrast, allows agents to have any arbitrary position.
Both grids and continuous spaces are frequently toroidal, meaning that the edges wrap around, with cells on the right
edge connected to those on the left edge, and the top to the bottom. This prevents some cells having fewer neighbors
than others, or agents being able to go off the edge of the environment.

Let’s add a simple spatial element to our model by putting our agents on a grid and make them walk around at random.
Instead of giving their unit of money to any random agent, they’ll give it to an agent on the same cell.

Mesa has two main types of grids: SingleGrid and MultiGrid*. SingleGrid enforces at most one agent per cell;
MultiGrid allows multiple agents to be in the same cell. Since we want agents to be able to share a cell, we use
MultiGrid.

*However there are more types of space to include HexGrid, NetworkGrid, and the previously mentioned
ContinuousSpace. Similar to mesa.time context is retained with mesa.space.[enter class]. You can see
the different classes as mesa.space

We instantiate a grid with width and height parameters, and a boolean as to whether the grid is toroidal. Let’s make
width and height model parameters, in addition to the number of agents, and have the grid always be toroidal. We can
place agents on a grid with the grid’s place_agent method, which takes an agent and an (x, y) tuple of the coordinates
to place the agent.

[13]: class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N, width, height):
self.num_agents = N
self.grid = mesa.space.MultiGrid(width, height, True)
self.schedule = mesa.time.RandomActivation(self)

Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)
self.schedule.add(a)

Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))

Under the hood, each agent’s position is stored in two ways: the agent is contained in the grid in the cell it is currently
in, and the agent has a pos variable with an (x, y) coordinate tuple. The place_agent method adds the coordinate to
the agent automatically.

Now we need to add to the agents’ behaviors, letting them move around and only give money to other agents in the
same cell.

First let’s handle movement, and have the agents move to a neighboring cell. The grid object provides a move_agent
method, which like you’d imagine, moves an agent to a given cell. That still leaves us to get the possible neighboring
cells to move to. There are a couple ways to do this. One is to use the current coordinates, and loop over all coordinates
+/- 1 away from it. For example:

neighbors = []
x, y = self.pos

(continues on next page)

4.2. Introductory Tutorial 21

https://en.wikipedia.org/wiki/Toroidal_graph
https://github.com/projectmesa/mesa/blob/main/mesa/space.py

Mesa Documentation, Release .1

(continued from previous page)

for dx in [-1, 0, 1]:
for dy in [-1, 0, 1]:

neighbors.append((x+dx, y+dy))

But there’s an even simpler way, using the grid’s built-in get_neighborhood method, which returns all the neighbors
of a given cell. This method can get two types of cell neighborhoods: Moore (includes all 8 surrounding squares), and
Von Neumann(only up/down/left/right). It also needs an argument as to whether to include the center cell itself as one
of the neighbors.

With that in mind, the agent’s move method looks like this:

class MoneyAgent(mesa.Agent):
#...
def move(self):

possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)

new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)

Next, we need to get all the other agents present in a cell, and give one of them some money. We can get the contents
of one or more cells using the grid’s get_cell_list_contents method, or by accessing a cell directly. The method
accepts a list of cell coordinate tuples, or a single tuple if we only care about one cell.

class MoneyAgent(mesa.Agent):
#...
def give_money(self):

cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:

other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1

And with those two methods, the agent’s step method becomes:

class MoneyAgent(mesa.Agent):
...
def step(self):

self.move()
if self.wealth > 0:

self.give_money()

Now, putting that all together should look like this:

[14]: class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1

def move(self):
(continues on next page)

22 Chapter 4. Mesa Packages

https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood

Mesa Documentation, Release .1

(continued from previous page)

possible_steps = self.model.grid.get_neighborhood(
self.pos, moore=True, include_center=False

)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)

def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:

other_agent = self.random.choice(cellmates)
other_agent.wealth += 1
self.wealth -= 1

def step(self):
self.move()
if self.wealth > 0:

self.give_money()

class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N, width, height):
self.num_agents = N
self.grid = mesa.space.MultiGrid(width, height, True)
self.schedule = mesa.time.RandomActivation(self)
Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)
self.schedule.add(a)
Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))

def step(self):
self.schedule.step()

Let’s create a model with 50 agents on a 10x10 grid, and run it for 20 steps.

[15]: model = MoneyModel(50, 10, 10)
for i in range(20):

model.step()

Now let’s use matplotlib and numpy to visualize the number of agents residing in each cell. To do that, we create a
numpy array of the same size as the grid, filled with zeros. Then we use the grid object’s coord_iter() feature, which
lets us loop over every cell in the grid, giving us each cell’s coordinates and contents in turn.

[16]: import numpy as np

agent_counts = np.zeros((model.grid.width, model.grid.height))
for cell in model.grid.coord_iter():

(continues on next page)

4.2. Introductory Tutorial 23

Mesa Documentation, Release .1

(continued from previous page)

cell_content, x, y = cell
agent_count = len(cell_content)
agent_counts[x][y] = agent_count

plt.imshow(agent_counts, interpolation="nearest")
plt.colorbar()

If running from a text editor or IDE, remember you'll need the following:
plt.show()

[16]: <matplotlib.colorbar.Colorbar at 0x7f6a3bad3970>

4.2.4.8 Collecting Data

So far, at the end of every model run, we’ve had to go and write our own code to get the data out of the model. This
has two problems: it isn’t very efficient, and it only gives us end results. If we wanted to know the wealth of each agent
at each step, we’d have to add that to the loop of executing steps, and figure out some way to store the data.

Since one of the main goals of agent-based modeling is generating data for analysis, Mesa provides a class which can
handle data collection and storage for us and make it easier to analyze.

The data collector stores three categories of data: model-level variables, agent-level variables, and tables (which are a
catch-all for everything else). Model- and agent-level variables are added to the data collector along with a function
for collecting them. Model-level collection functions take a model object as an input, while agent-level collection
functions take an agent object as an input. Both then return a value computed from the model or each agent at their
current state. When the data collector’s collect method is called, with a model object as its argument, it applies each
model-level collection function to the model, and stores the results in a dictionary, associating the current value with

24 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

the current step of the model. Similarly, the method applies each agent-level collection function to each agent currently
in the schedule, associating the resulting value with the step of the model, and the agent’s unique_id.

Let’s add a DataCollector to the model with `mesa.DataCollector <https://github.com/projectmesa/mesa/blob/
main/mesa/datacollection.py>`__, and collect two variables. At the agent level, we want to collect every agent’s wealth
at every step. At the model level, let’s measure the model’s Gini Coefficient, a measure of wealth inequality.

[17]: def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B

class MoneyAgent(mesa.Agent):
"""An agent with fixed initial wealth."""

def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1

def move(self):
possible_steps = self.model.grid.get_neighborhood(

self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)

def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
cellmates.pop(

cellmates.index(self)
) # Ensure agent is not giving money to itself
if len(cellmates) > 1:

other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
if other == self:

print("I JUST GAVE MONEY TO MYSELF HEHEHE!")

def step(self):
self.move()
if self.wealth > 0:

self.give_money()

class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N, width, height):
self.num_agents = N
self.grid = mesa.space.MultiGrid(width, height, True)
self.schedule = mesa.time.RandomActivation(self)

(continues on next page)

4.2. Introductory Tutorial 25

https://github.com/projectmesa/mesa/blob/main/mesa/datacollection.py
https://github.com/projectmesa/mesa/blob/main/mesa/datacollection.py
https://en.wikipedia.org/wiki/Gini_coefficient

Mesa Documentation, Release .1

(continued from previous page)

Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)
self.schedule.add(a)
Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))

self.datacollector = mesa.DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}

)

def step(self):
self.datacollector.collect(self)
self.schedule.step()

At every step of the model, the datacollector will collect and store the model-level current Gini coefficient, as well as
each agent’s wealth, associating each with the current step.

We run the model just as we did above. Now is when an interactive session, especially via a Notebook, comes in handy:
the DataCollector can export the data its collected as a pandas* DataFrame, for easy interactive analysis.

*If you are new to Python, please be aware that pandas is already installed as a dependency of Mesa and that pandas is
a “fast, powerful, flexible and easy to use open source data analysis and manipulation tool”. pandas is great resource
to help analyze the data collected in your models

[18]: model = MoneyModel(50, 10, 10)
for i in range(100):

model.step()

To get the series of Gini coefficients as a pandas DataFrame:

[19]: gini = model.datacollector.get_model_vars_dataframe()
gini.plot()

[19]: <Axes: >

26 Chapter 4. Mesa Packages

https://pandas.pydata.org/docs/

Mesa Documentation, Release .1

Similarly, we can get the agent-wealth data:

[20]: agent_wealth = model.datacollector.get_agent_vars_dataframe()
agent_wealth.head()

[20]: Wealth
Step AgentID
0 0 1

1 1
2 1
3 1
4 1

You’ll see that the DataFrame’s index is pairings of model step and agent ID. You can analyze it the way you would
any other DataFrame. For example, to get a histogram of agent wealth at the model’s end:

[21]: end_wealth = agent_wealth.xs(99, level="Step")["Wealth"]
end_wealth.hist(bins=range(agent_wealth.Wealth.max() + 1))

[21]: <Axes: >

4.2. Introductory Tutorial 27

Mesa Documentation, Release .1

Or to plot the wealth of a given agent (in this example, agent 14):

[22]: one_agent_wealth = agent_wealth.xs(14, level="AgentID")
one_agent_wealth.Wealth.plot()

[22]: <Axes: xlabel='Step'>

28 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

You can also use pandas to export the data to a CSV (comma separated value), which can be opened by any common
spreadsheet application or opened by pandas.

If you do not specify a file path, the file will be saved in the local directory. After you run the code below you will see
two files appear (model_data.csv and agent_data.csv)

[23]: # save the model data (stored in the pandas gini object) to CSV
gini.to_csv("model_data.csv")

save the agent data (stored in the pandas agent_wealth object) to CSV
agent_wealth.to_csv("agent_data.csv")

4.2.4.9 Batch Run

Like we mentioned above, you usually won’t run a model only once, but multiple times, with fixed parameters to
find the overall distributions the model generates, and with varying parameters to analyze how they drive the model’s
outputs and behaviors. Instead of needing to write nested for-loops for each model, Mesa provides a `batch_run
<https://github.com/projectmesa/mesa/blob/main/mesa/batchrunner.py>`__ function which automates it for you.

The batch runner also requires an additional variable self.running for the MoneyModel class. This variable enables
conditional shut off of the model once a condition is met. In this example it will be set as True indefinitely.

[24]: def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)

(continues on next page)

4.2. Introductory Tutorial 29

https://github.com/projectmesa/mesa/blob/main/mesa/batchrunner.py

Mesa Documentation, Release .1

(continued from previous page)

N = model.num_agents
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B

class MoneyModel(mesa.Model):
"""A model with some number of agents."""

def __init__(self, N, width, height):
self.num_agents = N
self.grid = mesa.space.MultiGrid(width, height, True)
self.schedule = mesa.time.RandomActivation(self)
self.running = True

Create agents
for i in range(self.num_agents):

a = MoneyAgent(i, self)
self.schedule.add(a)
Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))

self.datacollector = mesa.DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}

)

def step(self):
self.datacollector.collect(self)
self.schedule.step()

We call batch_run with the following arguments:

• model_cls The model class that is used for the batch run.

• parameters A dictionary containing all the parameters of the model class and desired values to use for the batch
run as key-value pairs. Each value can either be fixed (e.g. {"height": 10, "width": 10}) or an iterable
(e.g. {"N": range(10, 500, 10)}). batch_run will then generate all possible parameter combinations
based on this dictionary and run the model iterations times for each combination.

• number_processes If not specified, defaults to 1. Set it to None to use all the available processors. Note:
Multiprocessing does make debugging challenging. If your parameter sweeps are resulting in unexpected errors
set number_processes = 1.

• iterations The number of iterations to run each parameter combination for. Optional. If not specified, defaults
to 1.

• data_collection_periodThe length of the period (number of steps) after which the model and agent reporters
collect data. Optional. If not specified, defaults to -1, i.e. only at the end of each episode.

• max_steps The maximum number of time steps after which the model halts. An episode does either end
when self.running of the model class is set to False or when model.schedule.steps == max_steps
is reached. Optional. If not specified, defaults to 1000.

• display_progress Display the batch run progress. Optional. If not specified, defaults to True.

30 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

In the following example, we hold the height and width fixed, and vary the number of agents. We tell the batch runner
to run 5 instantiations of the model with each number of agents, and to run each for 100 steps.

We want to keep track of

1. the Gini coefficient value and

2. the individual agent’s wealth development.

Since for the latter changes at each time step might be interesting, we set data_collection_period = 1.

Note: The total number of runs is 245 (= 49 different populations * 5 iterations per population). However, the resulting
list of dictionaries will be of length 6186250 (= 250 average agents per population * 49 different populations * 5
iterations per population * 101 steps per iteration).

Note for Windows OS users: If you are running this tutorial in Jupyter, make sure that you set number_processes
= 1 (single process). If number_processes is greater than 1, it is less straightforward to set up. You can read Mesa’s
collection of useful snippets, in ‘Using multi-process batch_run on Windows’ section for how to do it.

[25]: params = {"width": 10, "height": 10, "N": range(10, 500, 10)}

results = mesa.batch_run(
MoneyModel,
parameters=params,
iterations=5,
max_steps=100,
number_processes=1,
data_collection_period=1,
display_progress=True,

)

100%|| 245/245 [00:55<00:00, 4.38it/s]

To further analyze the return of the batch_run function, we convert the list of dictionaries to a Pandas DataFrame and
print its keys.

[26]: import pandas as pd

results_df = pd.DataFrame(results)
print(results_df.keys())

Index(['RunId', 'iteration', 'Step', 'width', 'height', 'N', 'Gini', 'AgentID',
'Wealth'],

dtype='object')

First, we want to take a closer look at how the Gini coefficient at the end of each episode changes as we increase the
size of the population. For this, we filter our results to only contain the data of one agent (the Gini coefficient will be
the same for the entire population at any time) at the 100th step of each episode and then scatter-plot the values for
the Gini coefficient over the the number of agents. Notice there are five values for each population size since we set
iterations=5 when calling the batch run.

[27]: results_filtered = results_df[(results_df.AgentID == 0) & (results_df.Step == 100)]
N_values = results_filtered.N.values
gini_values = results_filtered.Gini.values
plt.scatter(N_values, gini_values)

[27]: <matplotlib.collections.PathCollection at 0x7f699ffabf10>

4.2. Introductory Tutorial 31

https://github.com/projectmesa/mesa/blob/main/docs/useful-snippets/snippets.rst
https://github.com/projectmesa/mesa/blob/main/docs/useful-snippets/snippets.rst

Mesa Documentation, Release .1

Second, we want to display the agent’s wealth at each time step of one specific episode. To do this, we again filter our
large data frame, this time with a fixed number of agents and only for a specific iteration of that population. To print
the results, we convert the filtered data frame to a string specifying the desired columns to print.

Pandas has built-in functions to convert to a lot of different data formats. For example, to display as a table in a Jupyter
Notebook, we can use the to_html() function which takes the same arguments as to_string() (see commented
lines).

[28]: # First, we filter the results
one_episode_wealth = results_df[(results_df.N == 10) & (results_df.iteration == 2)]
Then, print the columns of interest of the filtered data frame
print(

one_episode_wealth.to_string(
index=False, columns=["Step", "AgentID", "Wealth"], max_rows=25

)
)
For a prettier display we can also convert the data frame to html, uncomment to test␣
→˓in a Jupyter Notebook
from IPython.display import display, HTML
display(HTML(one_episode_wealth.to_html(index=False, columns=['Step', 'AgentID', 'Wealth'],
→˓ max_rows=25)))

Step AgentID Wealth
0 0 1
0 1 1
0 2 1

(continues on next page)

32 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

(continued from previous page)

0 3 1
0 4 1
0 5 1
0 6 1
0 7 1
0 8 1
0 9 1
1 0 1
1 1 1

...
99 8 1
99 9 0
100 0 1
100 1 1
100 2 2
100 3 1
100 4 2
100 5 1
100 6 1
100 7 0
100 8 1
100 9 0

Lastly, we want to take a look at the development of the Gini coefficient over the course of one iteration. Filtering and
printing looks almost the same as above, only this time we choose a different episode.

[29]: results_one_episode = results_df[
(results_df.N == 10) & (results_df.iteration == 1) & (results_df.AgentID == 0)

]
print(results_one_episode.to_string(index=False, columns=["Step", "Gini"], max_rows=25))

Step Gini
0 0.00
1 0.00
2 0.00
3 0.00
4 0.00
5 0.00
6 0.00
7 0.18
8 0.18
9 0.18
10 0.18
11 0.18
... ...
89 0.32
90 0.32
91 0.32
92 0.32
93 0.32
94 0.32
95 0.32
96 0.32

(continues on next page)

4.2. Introductory Tutorial 33

Mesa Documentation, Release .1

(continued from previous page)

97 0.32
98 0.32
99 0.32
100 0.32

4.2.4.10 Happy Modeling!

This document is a work in progress. If you see any errors, exclusions or have any problems please contact us.

[Comer2014] Comer, Kenneth W. “Who Goes First? An Examination of the Impact of Ac-
tivation on Outcome Behavior in AgentBased Models.” George Mason University, 2014.
http://mars.gmu.edu/bitstream/handle/1920/9070/Comer_gmu_0883E_10539.pdf

[Dragulescu2002] Drăgulescu, Adrian A., and Victor M. Yakovenko. “Statistical Mechanics of Money, Income, and
Wealth: A Short Survey.” arXiv Preprint Cond-mat/0211175, 2002. http://arxiv.org/abs/cond-mat/0211175.

4.3 Advanced Tutorial

4.3.1 Adding visualization

So far, we’ve built a model, run it, and analyzed some output afterwards. However, one of the advantages of agent-
based models is that we can often watch them run step by step, potentially spotting unexpected patterns, behaviors
or bugs, or developing new intuitions, hypotheses, or insights. Other times, watching a model run can explain it
to an unfamiliar audience better than static explanations. Like many ABM frameworks, Mesa allows you to create
an interactive visualization of the model. In this section we’ll walk through creating a visualization using built-in
components, and (for advanced users) how to create a new visualization element.

Note for Jupyter users: Due to conflicts with the tornado server Mesa uses and Jupyter, the interactive browser
of your model will load but likely not work. This will require you to use run the code from .py files. The Mesa
development team is working to develop a Jupyter compatible interface.

First, a quick explanation of how Mesa’s interactive visualization works. Visualization is done in a browser window,
using JavaScript to draw the different things being visualized at each step of the model. To do this, Mesa launches a
small web server, which runs the model, turns each step into a JSON object (essentially, structured plain text) and sends
those steps to the browser.

A visualization is built up of a few different modules: for example, a module for drawing agents on a grid, and another
one for drawing a chart of some variable. Each module has a Python part, which runs on the server and turns a model
state into JSON data; and a JavaScript side, which takes that JSON data and draws it in the browser window. Mesa
comes with a few modules built in, and let you add your own as well.

4.3.1.1 Grid Visualization

To start with, let’s have a visualization where we can watch the agents moving around the grid. For this, you will need
to put your model code in a separate Python source file. For now, let us use the MoneyModel created in the Introductory
Tutorial saved to MoneyModel.py file provided. Next, in a new source file (e.g. MoneyModel_Viz.py) include the
code shown in the following cells to run and avoid Jupyter compatibility issue.

[1]: # If MoneyModel.py is where your code is:
from MoneyModel import mesa, MoneyModel

34 Chapter 4. Mesa Packages

https://github.com/projectmesa/mesa/issues
http://mars.gmu.edu/bitstream/handle/1920/9070/Comer_gmu_0883E_10539.pdf
http://arxiv.org/abs/cond-mat/0211175
https://github.com/projectmesa/mesa/issues/1363
https://mesa.readthedocs.io/en/main/tutorials/intro_tutorial.html
https://mesa.readthedocs.io/en/main/tutorials/intro_tutorial.html

Mesa Documentation, Release .1

Mesa’s CanvasGrid visualization class works by looping over every cell in a grid, and generating a portrayal for every
agent it finds. A portrayal is a dictionary (which can easily be turned into a JSON object) which tells the JavaScript side
how to draw it. The only thing we need to provide is a function which takes an agent, and returns a portrayal object.
Here’s the simplest one: it’ll draw each agent as a red, filled circle which fills half of each cell.

[2]: def agent_portrayal(agent):
portrayal = {

"Shape": "circle",
"Color": "red",
"Filled": "true",
"Layer": 0,
"r": 0.5,

}
return portrayal

In addition to the portrayal method, we instantiate a canvas grid with its width and height in cells, and in pixels. In this
case, let’s create a 10x10 grid, drawn in 500 x 500 pixels.

[3]: grid = mesa.visualization.CanvasGrid(agent_portrayal, 10, 10, 500, 500)

Now we create and launch the actual server. We do this with the following arguments:

• The model class we’re running and visualizing; in this case, MoneyModel.

• A list of module objects to include in the visualization; here, just [grid]

• The title of the model: “Money Model”

• Any inputs or arguments for the model itself. In this case, 100 agents, and height and width of 10.

Once we create the server, we set the port (use default 8521 here) for it to listen on (you can treat this as just a piece of
the URL you’ll open in the browser).

[4]: server = mesa.visualization.ModularServer(
MoneyModel, [grid], "Money Model", {"N": 100, "width": 10, "height": 10}

)
server.port = 8521 # the default

Finally, when you’re ready to run the visualization, use the server’s launch() method.

The full code for source file MoneyModel_Viz.py should now look like:

from MoneyModel import mesa, MoneyModel

def agent_portrayal(agent):
portrayal = {"Shape": "circle",

"Filled": "true",
"Layer": 0,
"Color": "red",
"r": 0.5}

return portrayal

grid = mesa.visualization.CanvasGrid(agent_portrayal, 10, 10, 500, 500)
server = mesa.visualization.ModularServer(MoneyModel,

[grid],
"Money Model",

(continues on next page)

4.3. Advanced Tutorial 35

Mesa Documentation, Release .1

(continued from previous page)

{"N":100, "width":10, "height":10})
server.port = 8521 # The default
server.launch()

Now run this file; this should launch the interactive visualization server and open your web browser automatically. (If
the browser doesn’t open automatically, try pointing it at http://127.0.0.1:8521 manually. If this doesn’t show you the
visualization, something may have gone wrong with the server launch.)

You should see something like the figure below: the model title, an empty space where the grid will be, and a control
panel off to the right.

Click the Reset button on the control panel, and you should see the grid fill up with red circles, representing agents.

36 Chapter 4. Mesa Packages

http://127.0.0.1:8521

Mesa Documentation, Release .1

Click Step to advance the model by one step, and the agents will move around. Click Start and the agents will keep
moving around, at the rate set by the ‘fps’ (frames per second) slider at the top. Try moving it around and see how the
speed of the model changes. Pressing Stop will pause the model; presing Start again will restart it. Finally, Reset
will start a new instantiation of the model.

To stop the visualization server, go back to the terminal where you launched it, and press Control+c.

4.3.1.2 Changing the agents

In the visualization above, all we could see is the agents moving around – but not how much money they had, or anything
else of interest. Let’s change it so that agents who are broke (wealth 0) are drawn in grey, smaller, and above agents
who still have money.

To do this, we go back to our agent_portrayal code and add some code to change the portrayal based on the agent
properties and launch the server again.

[5]: def agent_portrayal(agent):
portrayal = {"Shape": "circle", "Filled": "true", "r": 0.5}

if agent.wealth > 0:
portrayal["Color"] = "red"
portrayal["Layer"] = 0

else:
portrayal["Color"] = "grey"

(continues on next page)

4.3. Advanced Tutorial 37

Mesa Documentation, Release .1

(continued from previous page)

portrayal["Layer"] = 1
portrayal["r"] = 0.2

return portrayal

This will open a new browser window pointed at the updated visualization. Initially it looks the same, but advance the
model and smaller grey circles start to appear. Note that since the zero-wealth agents have a higher layer number, they
are drawn on top of the red agents.

4.3.1.3 Adding a chart

Next, let’s add another element to the visualization: a chart, tracking the model’s Gini Coefficient. This is another
built-in element that Mesa provides.

The basic chart pulls data from the model’s DataCollector, and draws it as a line graph using the Charts.js JavaScript
libraries. We instantiate a chart element with a list of series for the chart to track. Each series is defined in a dictionary,
and has a Label (which must match the name of a model-level variable collected by the DataCollector) and a Color
name. We can also give the chart the name of the DataCollector object in the model.

Finally, we add the chart to the list of elements in the server. The elements are added to the visualization in the order
they appear, so the chart will appear underneath the grid.

[6]: chart = mesa.visualization.ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"

)
(continues on next page)

38 Chapter 4. Mesa Packages

http://www.chartjs.org/

Mesa Documentation, Release .1

(continued from previous page)

server = mesa.visualization.ModularServer(
MoneyModel, [grid, chart], "Money Model", {"N": 100, "width": 10, "height": 10}

)

Launch the visualization and start a model run, either by launching the server here or through the full code for source
file MoneyModel_Viz.py.

from MoneyModel import mesa, MoneyModel

def agent_portrayal(agent):
portrayal = {"Shape": "circle", "Filled": "true", "r": 0.5}

if agent.wealth > 0:
portrayal["Color"] = "red"
portrayal["Layer"] = 0

else:
portrayal["Color"] = "grey"
portrayal["Layer"] = 1
portrayal["r"] = 0.2

return portrayal

grid = mesa.visualization.CanvasGrid(agent_portrayal, 10, 10, 500, 500)
chart = mesa.visualization.ChartModule(

[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)

server = mesa.visualization.ModularServer(
MoneyModel, [grid, chart], "Money Model", {"N": 100, "width": 10, "height": 10}

)
server.port = 8521 # The default
server.launch()

You’ll see a line chart underneath the grid. Every step of the model, the line chart updates along with the grid. Reset
the model, and the chart resets too.

4.3. Advanced Tutorial 39

Mesa Documentation, Release .1

Note: You might notice that the chart line only starts after a couple of steps; this is due to a bug in Charts.js which will
hopefully be fixed soon.

4.3.2 Building your own visualization component

Note: This section is for users who have a basic familiarity with JavaScript. If that’s not you, don’t worry! (If you’re
an advanced JavaScript coder and find things that we’ve done wrong or inefficiently, please let us know!)

If the visualization elements provided by Mesa aren’t enough for you, you can build your own and plug them into the
model server.

First, you need to understand how the visualization works under the hood. Remember that each visualization module
has two sides: a Python object that runs on the server and generates JSON data from the model state (the server side),
and a JavaScript object that runs in the browser and turns the JSON into something it renders on the screen (the client
side).

Obviously, the two sides of each visualization must be designed in tandem. They result in one Python class, and one
JavaScript .js file. The path to the JavaScript file is a property of the Python class.

40 Chapter 4. Mesa Packages

https://github.com/projectmesa/mesa/issues

Mesa Documentation, Release .1

For this example, let’s build a simple histogram visualization, which can count the number of agents with each value
of wealth. We’ll use the Charts.js JavaScript library, which is already included with Mesa. If you go and look at its
documentation, you’ll see that it had no histogram functionality, which means we have to build our own out of a bar
chart. We’ll keep the histogram as simple as possible, giving it a fixed number of integer bins. If you were designing
a more general histogram to add to the Mesa repository for everyone to use across different models, obviously you’d
want something more general.

4.3.2.1 Client-Side Code

In general, the server- and client-side are written in tandem. However, if you’re like me and more comfortable with
Python than JavaScript, it makes sense to figure out how to get the JavaScript working first, and then write the Python
to be compatible with that.

In the same directory as your model, create a new file called HistogramModule.js. This will store the JavaScript
code for the client side of the new module.

JavaScript classes can look alien to people coming from other languages – specifically, they can look like functions.
(The Mozilla Introduction to Object-Oriented JavaScript is a good starting point). In HistogramModule.js, start by
creating the class itself:

const HistogramModule = function(bins, canvas_width, canvas_height) {
// The actual code will go here.

};

Note that our object is instantiated with three arguments: the number of integer bins, and the width and height (in
pixels) the chart will take up in the visualization window.

When the visualization object is instantiated, the first thing it needs to do is prepare to draw on the current page. To do
so, it adds a canvas tag to the page. It also gets the canvas’ context, which is required for doing anything with it.

const HistogramModule = function(bins, canvas_width, canvas_height) {
// Create the canvas object:
const canvas = document.createElement("canvas");
Object.assign(canvas, {
width: canvas_width,
height: canvas_height,
style: "border:1px dotted",

});
// Append it to #elements:
const elements = document.getElementById("elements");
elements.appendChild(canvas);

// Create the context and the drawing controller:
const context = canvas.getContext("2d");

};

Look at the Charts.js bar chart documentation. You’ll see some of the boilerplate needed to get a chart set up. Especially
important is the data object, which includes the datasets, labels, and color options. In this case, we want just one dataset
(we’ll keep things simple and name it “Data”); it has bins for categories, and the value of each category starts out at
zero. Finally, using these boilerplate objects and the canvas context we created, we can create the chart object.

const HistogramModule = function(bins, canvas_width, canvas_height) {
// Create the canvas object:
const canvas = document.createElement("canvas");
Object.assign(canvas, {

(continues on next page)

4.3. Advanced Tutorial 41

http://www.chartjs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
http://www.chartjs.org/docs/#bar-chart-introduction

Mesa Documentation, Release .1

(continued from previous page)

width: canvas_width,
height: canvas_height,
style: "border:1px dotted",

});
// Append it to #elements:
const elements = document.getElementById("elements");
elements.appendChild(canvas);

// Create the context and the drawing controller:
const context = canvas.getContext("2d");

// Prep the chart properties and series:
const datasets = [{

label: "Data",
fillColor: "rgba(151,187,205,0.5)",
strokeColor: "rgba(151,187,205,0.8)",
highlightFill: "rgba(151,187,205,0.75)",
highlightStroke: "rgba(151,187,205,1)",
data: []

}];

// Add a zero value for each bin
for (var i in bins)

datasets[0].data.push(0);

const data = {
labels: bins,
datasets: datasets

};

const options = {
scaleBeginsAtZero: true

};

// Create the chart object
let chart = new Chart(context, {type: 'bar', data: data, options: options});

// Now what?
};

There are two methods every client-side visualization class must implement to be able to work: render(data) to
render the incoming data, and reset() which is called to clear the visualization when the user hits the reset button
and starts a new model run.

In this case, the easiest way to pass data to the histogram is as an array, one value for each bin. We can then just loop
over the array and update the values in the chart’s dataset.

There are a few ways to reset the chart, but the easiest is probably to destroy it and create a new chart object in its place.

With that in mind, we can add these two methods to the class:

const HistogramModule = function(bins, canvas_width, canvas_height) {
// ...Everything from above...
this.render = function(data) {

(continues on next page)

42 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

(continued from previous page)

datasets[0].data = data;
chart.update();

};

this.reset = function() {
chart.destroy();
chart = new Chart(context, {type: 'bar', data: data, options: options});

};
};

Note the this. before the method names. This makes them public and ensures that they are accessible outside of the
object itself. All the other variables inside the class are only accessible inside the object itself, but not outside of it.

4.3.2.2 Server-Side Code

Can we get back to Python code? Please?

Every JavaScript visualization element has an equal and opposite server-side Python element. The Python class needs
to also have a render method, to get data out of the model object and into a JSON-ready format. It also needs to point
towards the code where the relevant JavaScript lives, and add the JavaScript object to the model page.

In a Python file (either its own, or in the same file as your visualization code), import the VisualizationElement
class we’ll inherit from, and create the new visualization class.

from mesa.visualization.ModularVisualization import VisualizationElement, CHART_JS_FILE

class HistogramModule(VisualizationElement):
package_includes = [CHART_JS_FILE]
local_includes = ["HistogramModule.js"]

def __init__(self, bins, canvas_height, canvas_width):
self.canvas_height = canvas_height
self.canvas_width = canvas_width
self.bins = bins
new_element = "new HistogramModule({}, {}, {})"
new_element = new_element.format(bins,

canvas_width,
canvas_height)

self.js_code = "elements.push(" + new_element + ");"

There are a few things going on here. package_includes is a list of JavaScript files that are part of Mesa itself
that the visualization element relies on. You can see the included files in mesa/visualization/templates/. Similarly,
local_includes is a list of JavaScript files in the same directory as the class code itself. Note that both of these are
class variables, not object variables – they hold for all particular objects.

Next, look at the __init__ method. It takes three arguments: the number of bins, and the width and height for the
histogram. It then uses these values to populate the js_code property; this is code that the server will insert into the
visualization page, which will run when the page loads. In this case, it creates a new HistogramModule (the class we
created in JavaScript in the step above) with the desired bins, width and height; it then appends (pushes) this object to
elements, the list of visualization elements that the visualization page itself maintains.

Now, the last thing we need is the render method. If we were making a general-purpose visualization module we’d
want this to be more general, but in this case we can hard-code it to our model.

4.3. Advanced Tutorial 43

https://github.com/projectmesa/mesa/tree/main/mesa/visualization/templates

Mesa Documentation, Release .1

import numpy as np

class HistogramModule(VisualizationElement):
... Everything from above...

def render(self, model):
wealth_vals = [agent.wealth for agent in model.schedule.agents]
hist = np.histogram(wealth_vals, bins=self.bins)[0]
return [int(x) for x in hist]

Every time the render method is called (with a model object as the argument) it uses numpy to generate counts of agents
with each wealth value in the bins, and then returns a list of these values. Note that the render method doesn’t return a
JSON string – just an object that can be turned into JSON, in this case a Python list (with Python integers as the values;
the json library doesn’t like dealing with numpy’s integer type).

Now, you can create your new HistogramModule and add it to the server:

histogram = mesa.visualization.HistogramModule(list(range(10)), 200, 500)
server = mesa.visualization.ModularServer(MoneyModel,

[grid, histogram, chart],
"Money Model",
{"N":100, "width":10, "height":10})

server.launch()

Run this code, and you should see your brand-new histogram added to the visualization and updating along with the
model!

If you’ve felt comfortable with this section, it might be instructive to read the code for the ModularServer and the
modular_template to get a better idea of how all the pieces fit together.

44 Chapter 4. Mesa Packages

https://github.com/projectmesa/mesa/blob/main/mesa/visualization/ModularVisualization.py#L259
https://github.com/projectmesa/mesa/blob/main/mesa/visualization/templates/modular_template.html

Mesa Documentation, Release .1

4.3.3 Happy Modeling!

This document is a work in progress. If you see any errors, exclusions or have any problems please contact us.

4.4 Best Practices

Here are some general principles that have proven helpful for developing models.

4.4.1 Model Layout

A model should be contained in a folder named with lower-case letters and underscores, such as thunder_cats. Within
that directory:

• README.md describes the model, how to use it, and any other details. Github will automatically show this file to
anyone visiting the directory.

• model.py should contain the model class. If the file gets large, it may make sense to move the complex bits into
other files, but this is the first place readers will look to figure out how the model works.

• server.py should contain the visualization support, including the server class.

• run.py is a Python script that will run the model when invoked via mesa runserver.

After the number of files grows beyond a half-dozen, try to use sub-folders to organize them. For example, if the
visualization uses image files, put those in an images directory.

The Schelling model is a good example of a small well-packaged model.

It’s easy to create a cookiecutter mesa model by running mesa startproject

4.4.2 Randomization

If your model involves some random choice, you can use the built-in random property that Mesa Model and Agent
objects have. This works exactly like the built-in random library.

class AwesomeModel(Model):
...

def cool_method(self):
interesting_number = self.random.random()
print(interesting_number)

class AwesomeAgent(Agent):
...
def __init__(self, unique_id, model, ...):
super().__init__(unique_id, model)
...

def my_method(self):
random_number = self.random.randint(0, 100)

(The agent’s random property is just a reference to its parent model’s random property).

4.4. Best Practices 45

https://github.com/projectmesa/mesa/issues
https://github.com/projectmesa/mesa-examples/tree/main/examples/Schelling

Mesa Documentation, Release .1

When a model object is created, its random property is automatically seeded with the current time. The seed determines
the sequence of random numbers; if you instantiate a model with the same seed, you will get the same results. To allow
you to set the seed, make sure your model has a seed argument in its constructor.

class AwesomeModel(Model):

def __init__(self, seed=None):
pass

def cool_method(self):
interesting_number = self.random.random()
print(interesting_number)

>>> model0 = AwesomeModel(seed=0)
>>> model0._seed
0
>>> model0.cool_method()
0.8444218515250481
>>> model1 = AwesomeModel(seed=0)
>>> model1.cool_method()
0.8444218515250481

4.5 Useful Snippets

A collection of useful code snippets. Here you can find code that allows you to get to get started on common tasks in
Mesa.

4.5.1 Models with Discrete Time

If you have Multiple type agents and one of them has time attribute you can still build a model that is run by discrete
time. In this example, each step of the model, and the agents have a time attribute that is equal to the discrete time to
run its own step.

if self.model.schedule.time in self.discrete_time:
self.model.space.move_agent(self, new_pos)

4.5.2 Using `numpy.random`

Sometimes you need to use numpy’s random library, for example to get a Poisson distribution.

class MyModel(Model):
def __init__(self, ...):

super().__init__()
self.random = np.random.default_rng(seed)

And just use numpy’s random as usual, e.g. self.random.poisson().

46 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

4.5.3 Using multi-process `batch_run` on Windows

You will have an issue with batch_run and number_processes = None. Your cell will show no progress, and in your
terminal you will receive AttributeError: Can’t get attribute ‘MoneyModel’ on <module ‘__main__’ (built-in)>. One
way to overcome this is to take your code outside of Jupyter and adjust the above code as follows.

from multiprocessing import freeze_support

params = {"width": 10, "height": 10, "N": range(10, 500, 10)}

if __name__ == '__main__':
freeze_support()
results = batch_run(

MoneyModel,
parameters=params,
iterations=5,
max_steps=100,
number_processes=None,
data_collection_period=1,
display_progress=True,

)

If you would still like to run your code in Jupyter you will need to adjust the cell as noted above. Then you can you can
add the nbmultitask library or look at this stackoverflow.

4.6 APIs

4.6.1 Base Classes

class Agent(unique_id: int, model: Model)
Base class for a model agent.

Create a new agent.

Args:
unique_id (int): A unique numeric identified for the agent model: (Model): Instance of the model that
contains the agent

step()→ None
A single step of the agent.

class Model(*args: Any, **kwargs: Any)
Base class for models.

Create a new model. Overload this method with the actual code to start the model.

Attributes:
schedule: schedule object running: a bool indicating if the model should continue running

run_model()→ None
Run the model until the end condition is reached. Overload as needed.

step()→ None
A single step. Fill in here.

4.6. APIs 47

(https://nbviewer.org/github/micahscopes/nbmultitask/blob/39b6f31b047e8a51a0fcb5c93ae4572684f877ce/examples.ipynb)
https://stackoverflow.com/questions/50937362/multiprocessing-on-python-3-jupyter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Mesa Documentation, Release .1

next_id()→ int
Return the next unique ID for agents, increment current_id

reset_randomizer(seed: int | None = None)→ None
Reset the model random number generator.

Args:
seed: A new seed for the RNG; if None, reset using the current seed

4.6.2 Mesa Time Module

Objects for handling the time component of a model. In particular, this module contains Schedulers, which handle
agent activation. A Scheduler is an object which controls when agents are called upon to act, and when.

The activation order can have a serious impact on model behavior, so it’s important to specify it explicitly. Example
simple activation regimes include activating all agents in the same order every step, shuffling the activation order every
time, activating each agent on average once per step, and more.

Key concepts:
Step: Many models advance in ‘steps’. A step may involve the activation of all agents, or a random (or selected)
subset of them. Each agent in turn may have their own step() method.

Time: Some models may simulate a continuous ‘clock’ instead of discrete steps. However, by default, the Time
is equal to the number of steps the model has taken.

class BaseScheduler(model: Model)
Simplest scheduler; activates agents one at a time, in the order they were added.

Assumes that each agent added has a step method which takes no arguments.

(This is explicitly meant to replicate the scheduler in MASON).

Create a new, empty BaseScheduler.

add(agent: Agent)→ None
Add an Agent object to the schedule.

Args:
agent: An Agent to be added to the schedule. NOTE: The agent must have a step() method.

remove(agent: Agent)→ None
Remove all instances of a given agent from the schedule.

Args:
agent: An agent object.

step()→ None
Execute the step of all the agents, one at a time.

get_agent_count()→ int
Returns the current number of agents in the queue.

agent_buffer(shuffled: bool = False)→ Iterator[Agent]
Simple generator that yields the agents while letting the user remove and/or add agents during stepping.

class RandomActivation(model: Model)
A scheduler which activates each agent once per step, in random order, with the order reshuffled every step.

This is equivalent to the NetLogo ‘ask agents. . . ’ and is generally the default behavior for an ABM.

48 Chapter 4. Mesa Packages

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator

Mesa Documentation, Release .1

Assumes that all agents have a step(model) method.

Create a new, empty BaseScheduler.

step()→ None
Executes the step of all agents, one at a time, in random order.

add(agent: Agent)→ None
Add an Agent object to the schedule.

Args:
agent: An Agent to be added to the schedule. NOTE: The agent must have a step() method.

agent_buffer(shuffled: bool = False)→ Iterator[Agent]
Simple generator that yields the agents while letting the user remove and/or add agents during stepping.

get_agent_count()→ int
Returns the current number of agents in the queue.

remove(agent: Agent)→ None
Remove all instances of a given agent from the schedule.

Args:
agent: An agent object.

class SimultaneousActivation(model: Model)
A scheduler to simulate the simultaneous activation of all the agents.

This scheduler requires that each agent have two methods: step and advance. step() activates the agent and stages
any necessary changes, but does not apply them yet. advance() then applies the changes.

Create a new, empty BaseScheduler.

step()→ None
Step all agents, then advance them.

add(agent: Agent)→ None
Add an Agent object to the schedule.

Args:
agent: An Agent to be added to the schedule. NOTE: The agent must have a step() method.

agent_buffer(shuffled: bool = False)→ Iterator[Agent]
Simple generator that yields the agents while letting the user remove and/or add agents during stepping.

get_agent_count()→ int
Returns the current number of agents in the queue.

remove(agent: Agent)→ None
Remove all instances of a given agent from the schedule.

Args:
agent: An agent object.

class StagedActivation(model: Model, stage_list: list[str] | None = None, shuffle: bool = False,
shuffle_between_stages: bool = False)

A scheduler which allows agent activation to be divided into several stages instead of a single step method. All
agents execute one stage before moving on to the next.

Agents must have all the stage methods implemented. Stage methods take a model object as their only argument.

4.6. APIs 49

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Mesa Documentation, Release .1

This schedule tracks steps and time separately. Time advances in fractional increments of 1 / (# of stages),
meaning that 1 step = 1 unit of time.

Create an empty Staged Activation schedule.

Args:
model: Model object associated with the schedule. stage_list: List of strings of names of stages to run, in
the

order to run them in.

shuffle: If True, shuffle the order of agents each step. shuffle_between_stages: If True, shuffle the agents
after each

stage; otherwise, only shuffle at the start of each step.

step()→ None
Executes all the stages for all agents.

add(agent: Agent)→ None
Add an Agent object to the schedule.

Args:
agent: An Agent to be added to the schedule. NOTE: The agent must have a step() method.

agent_buffer(shuffled: bool = False)→ Iterator[Agent]
Simple generator that yields the agents while letting the user remove and/or add agents during stepping.

get_agent_count()→ int
Returns the current number of agents in the queue.

remove(agent: Agent)→ None
Remove all instances of a given agent from the schedule.

Args:
agent: An agent object.

class RandomActivationByType(model: Model)
A scheduler which activates each type of agent once per step, in random order, with the order reshuffled every
step.

The step_type method is equivalent to the NetLogo ‘ask [breed]. . . ’ and is generally the default behavior for an
ABM. The step method performs step_type for each of the agent types.

Assumes that all agents have a step() method.

This implementation assumes that the type of an agent doesn’t change throughout the simulation.

If you want to do some computations / data collections specific to an agent type, you can either: - loop through
all agents, and filter by their type - access via your_model.scheduler.agents_by_type[your_type_class]

Create a new, empty BaseScheduler.

add(agent: Agent)→ None
Add an Agent object to the schedule

Args:
agent: An Agent to be added to the schedule.

remove(agent: Agent)→ None
Remove all instances of a given agent from the schedule.

50 Chapter 4. Mesa Packages

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Mesa Documentation, Release .1

step(shuffle_types: bool = True, shuffle_agents: bool = True)→ None
Executes the step of each agent type, one at a time, in random order.

Args:

shuffle_types: If True, the order of execution of each types is
shuffled.

shuffle_agents: If True, the order of execution of each agents in a
type group is shuffled.

step_type(type_class: type[Agent], shuffle_agents: bool = True)→ None
Shuffle order and run all agents of a given type. This method is equivalent to the NetLogo ‘ask [breed]. . . ’.

Args:
type_class: Class object of the type to run.

get_type_count(type_class: type[Agent])→ int
Returns the current number of agents of certain type in the queue.

agent_buffer(shuffled: bool = False)→ Iterator[Agent]
Simple generator that yields the agents while letting the user remove and/or add agents during stepping.

get_agent_count()→ int
Returns the current number of agents in the queue.

4.6.3 Mesa Space Module

Objects used to add a spatial component to a model.

Grid: base grid, which creates a rectangular grid. SingleGrid: extension to Grid which strictly enforces one agent per
cell. MultiGrid: extension to Grid where each cell can contain a set of agents. HexGrid: extension to Grid to handle
hexagonal neighbors. ContinuousSpace: a two-dimensional space where each agent has an arbitrary

position of float’s.

NetworkGrid: a network where each node contains zero or more agents.

accept_tuple_argument(wrapped_function: F)→ F
Decorator to allow grid methods that take a list of (x, y) coord tuples to also handle a single position, by auto-
matically wrapping tuple in single-item list rather than forcing user to do it.

class SingleGrid(width: int, height: int, torus: bool)
Rectangular grid where each cell contains exactly at most one agent.

Grid cells are indexed by [x, y], where [0, 0] is assumed to be the bottom-left and [width-1, height-1] is the
top-right. If a grid is toroidal, the top and bottom, and left and right, edges wrap to each other.

Properties:
width, height: The grid’s width and height. torus: Boolean which determines whether to treat the grid as a
torus.

Create a new grid.

Args:
width, height: The width and height of the grid torus: Boolean whether the grid wraps or not.

4.6. APIs 51

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Mesa Documentation, Release .1

position_agent(agent: Agent, x: int | str = 'random', y: int | str = 'random')→ None
Position an agent on the grid. This is used when first placing agents! Setting either x or y to “random” gives
the same behavior as ‘move_to_empty()’ to get a random position. If x or y are positive, they are used. Use
‘swap_pos()’ to swap agents positions.

place_agent(agent: Agent, pos: Tuple[int, int])→ None
Place the agent at the specified location, and set its pos variable.

remove_agent(agent: Agent)→ None
Remove the agent from the grid and set its pos attribute to None.

coord_iter()→ Iterator[tuple[GridContent, int, int]]
An iterator that returns coordinates as well as cell contents.

static default_val()→ None
Default value for new cell elements.

exists_empty_cells()→ bool
Return True if any cells empty else False.

find_empty()→ Coordinate | None
Pick a random empty cell.

get_neighborhood(pos: Coordinate, moore: bool, include_center: bool = False, radius: int = 1)→
list[Coordinate]

Return a list of cells that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals) If False, return Von Neumann neighborhood (exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of coordinate tuples representing the neighborhood; With radius 1, at most 9 if Moore, 5 if Von
Neumann (8 and 4 if not including the center).

get_neighbors(pos: Coordinate, moore: bool, include_center: bool = False, radius: int = 1)→ list[Agent]
Return a list of neighbors to a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

52 Chapter 4. Mesa Packages

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Mesa Documentation, Release .1

Returns:
A list of non-None objects in the given neighborhood; at most 9 if Moore, 5 if Von-Neumann (8 and 4
if not including the center).

is_cell_empty(pos: Tuple[int, int])→ bool
Returns a bool of the contents of a cell.

iter_neighborhood(pos: Tuple[int, int], moore: bool, include_center: bool = False, radius: int = 1)→
Iterator[Tuple[int, int]]

Return an iterator over cell coordinates that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of coordinate tuples representing the neighborhood. For example with radius 1, it will return
list with number of elements equals at most 9 (8) if Moore, 5 (4) if Von Neumann (if not including the
center).

iter_neighbors(pos: Tuple[int, int], moore: bool, include_center: bool = False, radius: int = 1)→
Iterator[Agent]

Return an iterator over neighbors to a certain point.

Args:
pos: Coordinates for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of non-None objects in the given neighborhood; at most 9 if Moore, 5 if Von-Neumann (8
and 4 if not including the center).

move_agent(agent: Agent, pos: Tuple[int, int])→ None
Move an agent from its current position to a new position.

Args:

agent: Agent object to move. Assumed to have its current location
stored in a ‘pos’ tuple.

pos: Tuple of new position to move the agent to.

4.6. APIs 53

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Mesa Documentation, Release .1

move_to_empty(agent: Agent, num_agents: int | None = None)→ None
Moves agent to a random empty cell, vacating agent’s old cell.

neighbor_iter(pos: Tuple[int, int], moore: bool = True)→ Iterator[Agent]
Iterate over position neighbors.

Args:
pos: (x,y) coords tuple for the position to get the neighbors of. moore: Boolean for whether to use
Moore neighborhood (including

diagonals) or Von Neumann (only up/down/left/right).

out_of_bounds(pos: Tuple[int, int])→ bool
Determines whether position is off the grid, returns the out of bounds coordinate.

swap_pos(agent_a: Agent, agent_b: Agent)→ None
Swap agents positions

torus_adj(pos: Tuple[int, int])→ Tuple[int, int]
Convert coordinate, handling torus looping.

class MultiGrid(width: int, height: int, torus: bool)
Rectangular grid where each cell can contain more than one agent.

Grid cells are indexed by [x, y], where [0, 0] is assumed to be at bottom-left and [width-1, height-1] is the
top-right. If a grid is toroidal, the top and bottom, and left and right, edges wrap to each other.

Properties:
width, height: The grid’s width and height. torus: Boolean which determines whether to treat the grid as a
torus.

Create a new grid.

Args:
width, height: The width and height of the grid torus: Boolean whether the grid wraps or not.

static default_val()→ List[Agent]
Default value for new cell elements.

place_agent(agent: Agent, pos: Tuple[int, int])→ None
Place the agent at the specified location, and set its pos variable.

remove_agent(agent: Agent)→ None
Remove the agent from the given location and set its pos attribute to None.

coord_iter()→ Iterator[tuple[GridContent, int, int]]
An iterator that returns coordinates as well as cell contents.

exists_empty_cells()→ bool
Return True if any cells empty else False.

find_empty()→ Coordinate | None
Pick a random empty cell.

get_neighborhood(pos: Coordinate, moore: bool, include_center: bool = False, radius: int = 1)→
list[Coordinate]

Return a list of cells that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

54 Chapter 4. Mesa Packages

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Mesa Documentation, Release .1

(including diagonals) If False, return Von Neumann neighborhood (exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of coordinate tuples representing the neighborhood; With radius 1, at most 9 if Moore, 5 if Von
Neumann (8 and 4 if not including the center).

get_neighbors(pos: Coordinate, moore: bool, include_center: bool = False, radius: int = 1)→ list[Agent]
Return a list of neighbors to a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of non-None objects in the given neighborhood; at most 9 if Moore, 5 if Von-Neumann (8 and 4
if not including the center).

is_cell_empty(pos: Tuple[int, int])→ bool
Returns a bool of the contents of a cell.

iter_neighborhood(pos: Tuple[int, int], moore: bool, include_center: bool = False, radius: int = 1)→
Iterator[Tuple[int, int]]

Return an iterator over cell coordinates that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of coordinate tuples representing the neighborhood. For example with radius 1, it will return
list with number of elements equals at most 9 (8) if Moore, 5 (4) if Von Neumann (if not including the
center).

4.6. APIs 55

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Mesa Documentation, Release .1

iter_neighbors(pos: Tuple[int, int], moore: bool, include_center: bool = False, radius: int = 1)→
Iterator[Agent]

Return an iterator over neighbors to a certain point.

Args:
pos: Coordinates for the neighborhood to get. moore: If True, return Moore neighborhood

(including diagonals)

If False, return Von Neumann neighborhood
(exclude diagonals)

include_center: If True, return the (x, y) cell as well.
Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of non-None objects in the given neighborhood; at most 9 if Moore, 5 if Von-Neumann (8
and 4 if not including the center).

move_agent(agent: Agent, pos: Tuple[int, int])→ None
Move an agent from its current position to a new position.

Args:

agent: Agent object to move. Assumed to have its current location
stored in a ‘pos’ tuple.

pos: Tuple of new position to move the agent to.

move_to_empty(agent: Agent, num_agents: int | None = None)→ None
Moves agent to a random empty cell, vacating agent’s old cell.

neighbor_iter(pos: Tuple[int, int], moore: bool = True)→ Iterator[Agent]
Iterate over position neighbors.

Args:
pos: (x,y) coords tuple for the position to get the neighbors of. moore: Boolean for whether to use
Moore neighborhood (including

diagonals) or Von Neumann (only up/down/left/right).

out_of_bounds(pos: Tuple[int, int])→ bool
Determines whether position is off the grid, returns the out of bounds coordinate.

swap_pos(agent_a: Agent, agent_b: Agent)→ None
Swap agents positions

torus_adj(pos: Tuple[int, int])→ Tuple[int, int]
Convert coordinate, handling torus looping.

class HexSingleGrid(width: int, height: int, torus: bool)
Hexagonal SingleGrid: a SingleGrid where neighbors are computed according to a hexagonal tiling of the grid.

Functions according to odd-q rules. See http://www.redblobgames.com/grids/hexagons/#coordinates for more.

Properties:
width, height: The grid’s width and height. torus: Boolean which determines whether to treat the grid as a
torus.

56 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://www.redblobgames.com/grids/hexagons/#coordinates

Mesa Documentation, Release .1

Create a new grid.

Args:
width, height: The width and height of the grid torus: Boolean whether the grid wraps or not.

coord_iter()→ Iterator[tuple[GridContent, int, int]]
An iterator that returns coordinates as well as cell contents.

static default_val()→ None
Default value for new cell elements.

exists_empty_cells()→ bool
Return True if any cells empty else False.

find_empty()→ Coordinate | None
Pick a random empty cell.

get_neighborhood(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Coordinate]
Return a list of coordinates that are in the neighborhood of a certain point. To calculate the neighborhood
for a HexGrid the parity of the x coordinate of the point is important, the neighborhood can be sketched as:

Always: (0,-), (0,+) When x is even: (-,+), (-,0), (+,+), (+,0) When x is odd: (-,0), (-,-), (+,0), (+,-)

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of coordinate tuples representing the neighborhood. For example with radius 1, it will return list
with number of elements equals at most 9 (8) if Moore, 5 (4) if Von Neumann (if not including the
center).

get_neighbors(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Agent]
Return a list of neighbors to a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of non-None objects in the given neighborhood

is_cell_empty(pos: Tuple[int, int])→ bool
Returns a bool of the contents of a cell.

iter_neighborhood(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→
Iterator[Tuple[int, int]]

Return an iterator over cell coordinates that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

4.6. APIs 57

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Mesa Documentation, Release .1

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of coordinate tuples representing the neighborhood.

iter_neighbors(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→ Iterator[Agent]
Return an iterator over neighbors to a certain point.

Args:
pos: Coordinates for the neighborhood to get. include_center: If True, return the (x, y) cell as well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of non-None objects in the given neighborhood

move_agent(agent: Agent, pos: Tuple[int, int])→ None
Move an agent from its current position to a new position.

Args:

agent: Agent object to move. Assumed to have its current location
stored in a ‘pos’ tuple.

pos: Tuple of new position to move the agent to.

move_to_empty(agent: Agent, num_agents: int | None = None)→ None
Moves agent to a random empty cell, vacating agent’s old cell.

neighbor_iter(pos: Tuple[int, int])→ Iterator[Agent]
Iterate over position neighbors.

Args:
pos: (x,y) coords tuple for the position to get the neighbors of.

out_of_bounds(pos: Tuple[int, int])→ bool
Determines whether position is off the grid, returns the out of bounds coordinate.

place_agent(agent: Agent, pos: Tuple[int, int])→ None
Place the agent at the specified location, and set its pos variable.

position_agent(agent: Agent, x: int | str = 'random', y: int | str = 'random')→ None
Position an agent on the grid. This is used when first placing agents! Setting either x or y to “random” gives
the same behavior as ‘move_to_empty()’ to get a random position. If x or y are positive, they are used. Use
‘swap_pos()’ to swap agents positions.

remove_agent(agent: Agent)→ None
Remove the agent from the grid and set its pos attribute to None.

swap_pos(agent_a: Agent, agent_b: Agent)→ None
Swap agents positions

torus_adj(pos: Tuple[int, int])→ Tuple[int, int]
Convert coordinate, handling torus looping.

58 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Mesa Documentation, Release .1

class HexMultiGrid(width: int, height: int, torus: bool)
Hexagonal MultiGrid: a MultiGrid where neighbors are computed according to a hexagonal tiling of the grid.

Functions according to odd-q rules. See http://www.redblobgames.com/grids/hexagons/#coordinates for more.

Properties:
width, height: The grid’s width and height. torus: Boolean which determines whether to treat the grid as a
torus.

Create a new grid.

Args:
width, height: The width and height of the grid torus: Boolean whether the grid wraps or not.

coord_iter()→ Iterator[tuple[GridContent, int, int]]
An iterator that returns coordinates as well as cell contents.

static default_val()→ List[Agent]
Default value for new cell elements.

exists_empty_cells()→ bool
Return True if any cells empty else False.

find_empty()→ Coordinate | None
Pick a random empty cell.

get_neighborhood(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Coordinate]
Return a list of coordinates that are in the neighborhood of a certain point. To calculate the neighborhood
for a HexGrid the parity of the x coordinate of the point is important, the neighborhood can be sketched as:

Always: (0,-), (0,+) When x is even: (-,+), (-,0), (+,+), (+,0) When x is odd: (-,0), (-,-), (+,0), (+,-)

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of coordinate tuples representing the neighborhood. For example with radius 1, it will return list
with number of elements equals at most 9 (8) if Moore, 5 (4) if Von Neumann (if not including the
center).

get_neighbors(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Agent]
Return a list of neighbors to a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of non-None objects in the given neighborhood

is_cell_empty(pos: Tuple[int, int])→ bool
Returns a bool of the contents of a cell.

4.6. APIs 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://www.redblobgames.com/grids/hexagons/#coordinates
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Mesa Documentation, Release .1

iter_neighborhood(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→
Iterator[Tuple[int, int]]

Return an iterator over cell coordinates that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of coordinate tuples representing the neighborhood.

iter_neighbors(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→ Iterator[Agent]
Return an iterator over neighbors to a certain point.

Args:
pos: Coordinates for the neighborhood to get. include_center: If True, return the (x, y) cell as well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of non-None objects in the given neighborhood

move_agent(agent: Agent, pos: Tuple[int, int])→ None
Move an agent from its current position to a new position.

Args:

agent: Agent object to move. Assumed to have its current location
stored in a ‘pos’ tuple.

pos: Tuple of new position to move the agent to.

move_to_empty(agent: Agent, num_agents: int | None = None)→ None
Moves agent to a random empty cell, vacating agent’s old cell.

neighbor_iter(pos: Tuple[int, int])→ Iterator[Agent]
Iterate over position neighbors.

Args:
pos: (x,y) coords tuple for the position to get the neighbors of.

out_of_bounds(pos: Tuple[int, int])→ bool
Determines whether position is off the grid, returns the out of bounds coordinate.

place_agent(agent: Agent, pos: Tuple[int, int])→ None
Place the agent at the specified location, and set its pos variable.

remove_agent(agent: Agent)→ None
Remove the agent from the given location and set its pos attribute to None.

swap_pos(agent_a: Agent, agent_b: Agent)→ None
Swap agents positions

torus_adj(pos: Tuple[int, int])→ Tuple[int, int]
Convert coordinate, handling torus looping.

60 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Mesa Documentation, Release .1

class HexGrid(width: int, height: int, torus: bool)
Hexagonal Grid: a Grid where neighbors are computed according to a hexagonal tiling of the grid.

Functions according to odd-q rules. See http://www.redblobgames.com/grids/hexagons/#coordinates for more.

Properties:
width, height: The grid’s width and height. torus: Boolean which determines whether to treat the grid as a
torus.

Create a new grid.

Args:
width, height: The width and height of the grid torus: Boolean whether the grid wraps or not.

coord_iter()→ Iterator[tuple[GridContent, int, int]]
An iterator that returns coordinates as well as cell contents.

static default_val()→ None
Default value for new cell elements.

exists_empty_cells()→ bool
Return True if any cells empty else False.

find_empty()→ Coordinate | None
Pick a random empty cell.

get_neighborhood(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Coordinate]
Return a list of coordinates that are in the neighborhood of a certain point. To calculate the neighborhood
for a HexGrid the parity of the x coordinate of the point is important, the neighborhood can be sketched as:

Always: (0,-), (0,+) When x is even: (-,+), (-,0), (+,+), (+,0) When x is odd: (-,0), (-,-), (+,0), (+,-)

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of coordinate tuples representing the neighborhood. For example with radius 1, it will return list
with number of elements equals at most 9 (8) if Moore, 5 (4) if Von Neumann (if not including the
center).

get_neighbors(pos: Coordinate, include_center: bool = False, radius: int = 1)→ list[Agent]
Return a list of neighbors to a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
A list of non-None objects in the given neighborhood

is_cell_empty(pos: Tuple[int, int])→ bool
Returns a bool of the contents of a cell.

4.6. APIs 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://www.redblobgames.com/grids/hexagons/#coordinates
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Mesa Documentation, Release .1

iter_neighborhood(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→
Iterator[Tuple[int, int]]

Return an iterator over cell coordinates that are in the neighborhood of a certain point.

Args:
pos: Coordinate tuple for the neighborhood to get. include_center: If True, return the (x, y) cell as
well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of coordinate tuples representing the neighborhood.

iter_neighbors(pos: Tuple[int, int], include_center: bool = False, radius: int = 1)→ Iterator[Agent]
Return an iterator over neighbors to a certain point.

Args:
pos: Coordinates for the neighborhood to get. include_center: If True, return the (x, y) cell as well.

Otherwise, return surrounding cells only.

radius: radius, in cells, of neighborhood to get.

Returns:
An iterator of non-None objects in the given neighborhood

move_agent(agent: Agent, pos: Tuple[int, int])→ None
Move an agent from its current position to a new position.

Args:

agent: Agent object to move. Assumed to have its current location
stored in a ‘pos’ tuple.

pos: Tuple of new position to move the agent to.

move_to_empty(agent: Agent, num_agents: int | None = None)→ None
Moves agent to a random empty cell, vacating agent’s old cell.

neighbor_iter(pos: Tuple[int, int])→ Iterator[Agent]
Iterate over position neighbors.

Args:
pos: (x,y) coords tuple for the position to get the neighbors of.

out_of_bounds(pos: Tuple[int, int])→ bool
Determines whether position is off the grid, returns the out of bounds coordinate.

place_agent(agent: Agent, pos: Tuple[int, int])→ None
Place the agent at the specified location, and set its pos variable.

position_agent(agent: Agent, x: int | str = 'random', y: int | str = 'random')→ None
Position an agent on the grid. This is used when first placing agents! Setting either x or y to “random” gives
the same behavior as ‘move_to_empty()’ to get a random position. If x or y are positive, they are used. Use
‘swap_pos()’ to swap agents positions.

remove_agent(agent: Agent)→ None
Remove the agent from the grid and set its pos attribute to None.

62 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Mesa Documentation, Release .1

swap_pos(agent_a: Agent, agent_b: Agent)→ None
Swap agents positions

torus_adj(pos: Tuple[int, int])→ Tuple[int, int]
Convert coordinate, handling torus looping.

class ContinuousSpace(x_max: float, y_max: float, torus: bool, x_min: float = 0, y_min: float = 0)
Continuous space where each agent can have an arbitrary position.

Assumes that all agents have a pos property storing their position as an (x, y) tuple.

This class uses a numpy array internally to store agents in order to speed up neighborhood lookups. This array
is calculated on the first neighborhood lookup, and is updated if agents are added or removed.

Create a new continuous space.

Args:
x_max, y_max: Maximum x and y coordinates for the space. torus: Boolean for whether the edges loop
around. x_min, y_min: (default 0) If provided, set the minimum x and y

coordinates for the space. Below them, values loop to the other edge (if torus=True) or raise an
exception.

place_agent(agent: Agent, pos: Tuple[float, float] | ndarray[Any, dtype[float]])→ None
Place a new agent in the space.

Args:
agent: Agent object to place. pos: Coordinate tuple for where to place the agent.

move_agent(agent: Agent, pos: Tuple[float, float] | ndarray[Any, dtype[float]])→ None
Move an agent from its current position to a new position.

Args:
agent: The agent object to move. pos: Coordinate tuple to move the agent to.

remove_agent(agent: Agent)→ None
Remove an agent from the space.

Args:
agent: The agent object to remove

get_neighbors(pos: FloatCoordinate, radius: float, include_center: bool = True)→ list[Agent]
Get all agents within a certain radius.

Args:
pos: (x,y) coordinate tuple to center the search at. radius: Get all the objects within this distance of
the center. include_center: If True, include an object at the exact provided

coordinates. i.e. if you are searching for the neighbors of a given agent, True will include that
agent in the results.

get_heading(pos_1: Tuple[float, float] | ndarray[Any, dtype[float]], pos_2: Tuple[float, float] |
ndarray[Any, dtype[float]])→ Tuple[float, float] | ndarray[Any, dtype[float]]

Get the heading vector between two points, accounting for toroidal space. It is possible to calculate the
heading angle by applying the atan2 function to the result.

Args:
pos_1, pos_2: Coordinate tuples for both points.

4.6. APIs 63

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float

Mesa Documentation, Release .1

get_distance(pos_1: Tuple[float, float] | ndarray[Any, dtype[float]], pos_2: Tuple[float, float] |
ndarray[Any, dtype[float]])→ float

Get the distance between two point, accounting for toroidal space.

Args:
pos_1, pos_2: Coordinate tuples for both points.

torus_adj(pos: Tuple[float, float] | ndarray[Any, dtype[float]])→ Tuple[float, float] | ndarray[Any,
dtype[float]]

Adjust coordinates to handle torus looping.

If the coordinate is out-of-bounds and the space is toroidal, return the corresponding point within the space.
If the space is not toroidal, raise an exception.

Args:
pos: Coordinate tuple to convert.

out_of_bounds(pos: Tuple[float, float] | ndarray[Any, dtype[float]])→ bool
Check if a point is out of bounds.

class NetworkGrid(g: Any)
Network Grid where each node contains zero or more agents.

Create a new network.

Args:
G: a NetworkX graph instance.

static default_val()→ list
Default value for a new node.

place_agent(agent: Agent, node_id: int)→ None
Place an agent in a node.

get_neighbors(node_id: int, include_center: bool = False, radius: int = 1)→ list[int]
Get all adjacent nodes within a certain radius

move_agent(agent: Agent, node_id: int)→ None
Move an agent from its current node to a new node.

remove_agent(agent: Agent)→ None
Remove the agent from the network and set its pos attribute to None.

is_cell_empty(node_id: int)→ bool
Returns a bool of the contents of a cell.

get_cell_list_contents(cell_list: list[int])→ list[Agent]
Returns a list of the agents contained in the nodes identified in cell_list; nodes with empty content are
excluded.

get_all_cell_contents()→ list[Agent]
Returns a list of all the agents in the network.

iter_cell_list_contents(cell_list: list[int])→ Iterator[Agent]
Returns an iterator of the agents contained in the nodes identified in cell_list; nodes with empty content are
excluded.

64 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Mesa Documentation, Release .1

4.6.4 Mesa Data Collection Module

DataCollector is meant to provide a simple, standard way to collect data generated by a Mesa model. It collects three
types of data: model-level data, agent-level data, and tables.

A DataCollector is instantiated with two dictionaries of reporter names and associated variable names or functions
for each, one for model-level data and one for agent-level data; a third dictionary provides table names and columns.
Variable names are converted into functions which retrieve attributes of that name.

When the collect() method is called, each model-level function is called, with the model as the argument, and the results
associated with the relevant variable. Then the agent-level functions are called on each agent in the model scheduler.

Additionally, other objects can write directly to tables by passing in an appropriate dictionary object for a table row.

The DataCollector then stores the data it collects in dictionaries:

• model_vars maps each reporter to a list of its values

• tables maps each table to a dictionary, with each column as a key with a list as its value.

• _agent_records maps each model step to a list of each agents id and its values.

Finally, DataCollector can create a pandas DataFrame from each collection.

The default DataCollector here makes several assumptions:

• The model has a schedule object called ‘schedule’

• The schedule has an agent list called agents

• For collecting agent-level variables, agents must have a unique_id

class DataCollector(model_reporters=None, agent_reporters=None, tables=None)
Class for collecting data generated by a Mesa model.

A DataCollector is instantiated with dictionaries of names of model- and agent-level variables to collect, asso-
ciated with attribute names or functions which actually collect them. When the collect(. . .) method is called, it
collects these attributes and executes these functions one by one and stores the results.

Instantiate a DataCollector with lists of model and agent reporters. Both model_reporters and agent_reporters
accept a dictionary mapping a variable name to either an attribute name, or a method. For example, if there was
only one model-level reporter for number of agents, it might look like:

{“agent_count”: lambda m: m.schedule.get_agent_count() }

If there was only one agent-level reporter (e.g. the agent’s energy), it might look like this:

{“energy”: “energy”}

or like this:
{“energy”: lambda a: a.energy}

The tables arg accepts a dictionary mapping names of tables to lists of columns. For example, if we want to allow
agents to write their age when they are destroyed (to keep track of lifespans), it might look like:

{“Lifespan”: [“unique_id”, “age”]}

Args:
model_reporters: Dictionary of reporter names and attributes/funcs agent_reporters: Dictionary of reporter
names and attributes/funcs. tables: Dictionary of table names to lists of column names.

4.6. APIs 65

Mesa Documentation, Release .1

Notes:
If you want to pickle your model you must not use lambda functions. If your model includes a large number
of agents, you should only use attribute names for the agent reporter, it will be much faster.

Model reporters can take four types of arguments: lambda like above: {“agent_count”: lambda m:
m.schedule.get_agent_count() } method of a class/instance: {“agent_count”: self.get_agent_count} # self
here is a class instance {“agent_count”: Model.get_agent_count} # Model here is a class class attributes
of a model {“model_attribute”: “model_attribute”} functions with parameters that have placed in a list
{“Model_Function”:[function, [param_1, param_2]]}

collect(model)
Collect all the data for the given model object.

add_table_row(table_name, row, ignore_missing=False)
Add a row dictionary to a specific table.

Args:
table_name: Name of the table to append a row to. row: A dictionary of the form {column_name:
value. . . } ignore_missing: If True, fill any missing columns with Nones;

if False, throw an error if any columns are missing

get_model_vars_dataframe()

Create a pandas DataFrame from the model variables.

The DataFrame has one column for each model variable, and the index is (implicitly) the model tick.

get_agent_vars_dataframe()

Create a pandas DataFrame from the agent variables.

The DataFrame has one column for each variable, with two additional columns for tick and agent_id.

get_table_dataframe(table_name)
Create a pandas DataFrame from a particular table.

Args:
table_name: The name of the table to convert.

4.6.5 Batchrunner

A single class to manage a batch run or parameter sweep of a given model.

batch_run(model_cls: Type[Model], parameters: Mapping[str, Any | Iterable[Any]], number_processes: int | None
= 1, iterations: int = 1, data_collection_period: int = -1, max_steps: int = 1000, display_progress:
bool = True)→ List[Dict[str, Any]]

Batch run a mesa model with a set of parameter values.

66 Chapter 4. Mesa Packages

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Mesa Documentation, Release .1

4.6.6 Parameters

model_cls
[Type[Model]] The model class to batch-run

parameters
[Mapping[str, Union[Any, Iterable[Any]]],] Dictionary with model parameters over which to run the model.
You can either pass single values or iterables.

number_processes
[int, optional] Number of processes used, by default 1. Set this to None if you want to use all CPUs.

iterations
[int, optional] Number of iterations for each parameter combination, by default 1

data_collection_period
[int, optional] Number of steps after which data gets collected, by default -1 (end of episode)

max_steps
[int, optional] Maximum number of model steps after which the model halts, by default 1000

display_progress
[bool, optional] Display batch run process, by default True

4.6.7 Returns

List[Dict[str, Any]]
[description]

exception ParameterError(bad_names)

exception VariableParameterError(bad_names)

class FixedBatchRunner(model_cls, parameters_list=None, fixed_parameters=None, iterations=1,
max_steps=1000, model_reporters=None, agent_reporters=None,
display_progress=True)

This class is instantiated with a model class, and model parameters associated with one or more values. It is
also instantiated with model and agent-level reporters, dictionaries mapping a variable name to a function which
collects some data from the model or its agents at the end of the run and stores it.

Note that by default, the reporters only collect data at the end of the run. To get step by step data, simply have a
reporter store the model’s entire DataCollector object.

Create a new BatchRunner for a given model with the given parameters.

Args:
model_cls: The class of model to batch-run. parameters_list: A list of dictionaries of parameter sets.

The model will be run with dictionary of parameters. For example, given parameters_list of

[{“homophily”: 3, “density”: 0.8, “minority_pc”: 0.2}, {“homophily”: 2, “density”:
0.9, “minority_pc”: 0.1}, {“homophily”: 4, “density”: 0.6, “minority_pc”: 0.5}]

3 models will be run, one for each provided set of parameters.

fixed_parameters: Dictionary of parameters that stay same through

all batch runs. For example, given fixed_parameters of
{“constant_parameter”: 3},

4.6. APIs 67

Mesa Documentation, Release .1

every instantiated model will be passed constant_parameter=3 as a kwarg.

iterations: The total number of times to run the model for each set
of parameters.

max_steps: Upper limit of steps above which each run will be halted
if it hasn’t halted on its own.

model_reporters: The dictionary of variables to collect on each run
at the end, with variable names mapped to a function to collect them. For example:

{“agent_count”: lambda m: m.schedule.get_agent_count()}

agent_reporters: Like model_reporters, but each variable is now
collected at the level of each agent present in the model at the end of the run.

display_progress: Display progress bar with time estimation?

run_all()

Run the model at all parameter combinations and store results.

run_model(model)
Run a model object to completion, or until reaching max steps.

If your model runs in a non-standard way, this is the method to modify in your subclass.

collect_model_vars(model)
Run reporters and collect model-level variables.

collect_agent_vars(model)
Run reporters and collect agent-level variables.

get_model_vars_dataframe()

Generate a pandas DataFrame from the model-level variables collected.

get_agent_vars_dataframe()

Generate a pandas DataFrame from the agent-level variables collected.

get_collector_model()

Passes pandas dataframes from datacollector module in dictionary format of model reporters :return: dict
{(Param1, Param2,. . . ,iteration): <DataCollector Pandas DataFrame>}

get_collector_agents()

Passes pandas dataframes from datacollector module in dictionary format of agent reporters :return: dict
{(Param1, Param2,. . . ,iteration): <DataCollector Pandas DataFrame>}

class BatchRunner(model_cls, variable_parameters=None, fixed_parameters=None, iterations=1,
max_steps=1000, model_reporters=None, agent_reporters=None, display_progress=True)

DEPRECATION WARNING: BatchRunner Class has been replaced batch_run function This class is instantiated
with a model class, and model parameters associated with one or more values. It is also instantiated with model
and agent-level reporters, dictionaries mapping a variable name to a function which collects some data from the
model or its agents at the end of the run and stores it.

Note that by default, the reporters only collect data at the end of the run. To get step by step data, simply have a
reporter store the model’s entire DataCollector object.

Create a new BatchRunner for a given model with the given parameters.

Args:
model_cls: The class of model to batch-run. variable_parameters: Dictionary of parameters to lists of
values.

68 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

The model will be run with every combo of these parameters. For example, given vari-
able_parameters of

{“param_1”: range(5),
“param_2”: [1, 5, 10]}

models will be run with {param_1=1, param_2=1},
{param_1=2, param_2=1}, . . . , {param_1=4, param_2=10}.

fixed_parameters: Dictionary of parameters that stay same through

all batch runs. For example, given fixed_parameters of
{“constant_parameter”: 3},

every instantiated model will be passed constant_parameter=3 as a kwarg.

iterations: The total number of times to run the model for each
combination of parameters.

max_steps: Upper limit of steps above which each run will be halted
if it hasn’t halted on its own.

model_reporters: The dictionary of variables to collect on each run
at the end, with variable names mapped to a function to collect them. For example:

{“agent_count”: lambda m: m.schedule.get_agent_count()}

agent_reporters: Like model_reporters, but each variable is now
collected at the level of each agent present in the model at the end of the run.

display_progress: Display progress bar with time estimation?

class BatchRunnerMP(model_cls, nr_processes=None, **kwargs)
DEPRECATION WARNING: BatchRunner class has been replaced by batch_run Child class of BatchRunner,
extended with multiprocessing support.

Create a new BatchRunnerMP for a given model with the given parameters.

model_cls: The class of model to batch-run. nr_processes: int

the number of separate processes the BatchRunner should start, all running in parallel.

kwargs: the kwargs required for the parent BatchRunner class

run_all()

Run the model at all parameter combinations and store results, overrides run_all from BatchRunner.

4.6.8 Visualization

4.6.8.1 Mesa Visualization Module

TextVisualization: Base class for writing ASCII visualizations of model state.

TextServer: Class which takes a TextVisualization child class as an input, and renders it in-browser, along with an
interface.

4.6. APIs 69

Mesa Documentation, Release .1

4.6.8.2 ModularServer

A visualization server which renders a model via one or more elements.

The concept for the modular visualization server as follows: A visualization is composed of VisualizationElements,
each of which defines how to generate some visualization from a model instance and render it on the client. Visualiza-
tionElements may be anything from a simple text display to a multilayered HTML5 canvas.

The actual server is launched with one or more VisualizationElements; it runs the model object through each of them,
generating data to be sent to the client. The client page is also generated based on the JavaScript code provided by each
element.

This file consists of the following classes:

VisualizationElement: Parent class for all other visualization elements, with
the minimal necessary options.

PageHandler: The handler for the visualization page, generated from a template
and built from the various visualization elements.

SocketHandler: Handles the websocket connection between the client page and
the server.

ModularServer: The overall visualization application class which stores and
controls the model and visualization instance.

ModularServer should not need to be subclassed on a model-by-model basis; it should be primarily a pass-through for
VisualizationElement subclasses, which define the actual visualization specifics.

For example, suppose we have created two visualization elements for our model, called canvasvis and graphvis; we
would launch a server with:

server = ModularServer(MyModel, [canvasvis, graphvis], name=”My Model”) server.launch()

The client keeps track of what step it is showing. Clicking the Step button in the browser sends a message requesting
the viz_state corresponding to the next step position, which is then sent back to the client via the websocket.

The websocket protocol is as follows: Each message is a JSON object, with a “type” property which defines the rest of
the structure.

Server -> Client:
Send over the model state to visualize. Model state is a list, with each element corresponding to a div; each div
is expected to have a render function associated with it, which knows how to render that particular data. The
example below includes two elements: the first is data for a CanvasGrid, the second for a raw text display.

{ “type”: “viz_state”, “data”: [{0:[{“Shape”: “circle”, “x”: 0, “y”: 0, “r”: 0.5,

“Color”: “#AAAAAA”, “Filled”: “true”, “Layer”: 0, “text”: ‘A’, “text_color”: “white” }]},

“Shape Count: 1”]

}

Informs the client that the model is over. {“type”: “end”}

Informs the client of the current model’s parameters { “type”: “model_params”, “params”: ‘dict’ of model
params, (i.e. {arg_1: val_1, . . . }) }

Client -> Server:
Reset the model. TODO: Allow this to come with parameters { “type”: “reset” }

Get a given state. { “type”: “get_step”, “step:” index of the step to get. }

Submit model parameter updates { “type”: “submit_params”, “param”: name of model parameter “value”: new
value for ‘param’ }

70 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

Get the model’s parameters { “type”: “get_params” }

class VisualizationElement

Defines an element of the visualization.

Attributes:

package_includes: A list of external JavaScript and CSS files to
include that are part of the Mesa packages.

local_includes: A list of JavaScript and CSS files that are local to
the directory that the server is being run in.

js_code: A JavaScript code string to instantiate the element. local_dir: A full path to the directory contain-
ing the local includes.

If a relative path is given, it is relative to the working directory where the server is being run. If
an absolute path is given, it is used as-is. Default is the current working directory.

Methods:

render: Takes a model object, and produces JSON data which can be sent
to the client.

render(model)
Build visualization data from a model object.

Args:
model: A model object

Returns:
A JSON-ready object.

class TextElement

Module for drawing live-updating text.

class PageHandler(application: Application, request: HTTPServerRequest, **kwargs: Any)
Handler for the HTML template which holds the visualization.

class SocketHandler(application: Application, request: HTTPServerRequest, **kwargs: Any)
Handler for websocket.

open()

Invoked when a new WebSocket is opened.

The arguments to open are extracted from the tornado.web.URLSpec regular expression, just like the argu-
ments to tornado.web.RequestHandler.get.

open may be a coroutine. on_message will not be called until open has returned.

Changed in version 5.1: open may be a coroutine.

check_origin(origin)
Override to enable support for allowing alternate origins.

The origin argument is the value of the OriginHTTP header, the url responsible for initiating this request.
This method is not called for clients that do not send this header; such requests are always allowed (because
all browsers that implement WebSockets support this header, and non-browser clients do not have the same
cross-site security concerns).

Should return True to accept the request or False to reject it. By default, rejects all requests with an origin
on a host other than this one.

4.6. APIs 71

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Mesa Documentation, Release .1

This is a security protection against cross site scripting attacks on browsers, since WebSockets are allowed
to bypass the usual same-origin policies and don’t use CORS headers.

Warning: This is an important security measure; don’t disable it without understanding the security
implications. In particular, if your authentication is cookie-based, you must either restrict the origins
allowed by check_origin() or implement your own XSRF-like protection for websocket connections.
See these articles for more.

To accept all cross-origin traffic (which was the default prior to Tornado 4.0), simply override this method
to always return True:

def check_origin(self, origin):
return True

To allow connections from any subdomain of your site, you might do something like:

def check_origin(self, origin):
parsed_origin = urllib.parse.urlparse(origin)
return parsed_origin.netloc.endswith(".mydomain.com")

New in version 4.0.

on_message(message)
Receiving a message from the websocket, parse, and act accordingly.

class ModularServer(model_cls, visualization_elements, name='Mesa Model', model_params=None,
port=None)

Main visualization application.

Args:
model_cls: Mesa model class visualization_elements: visualisation elements name: A String for the model
name port: Port the webserver listens to (int)

Order of configuration: 1. Parameter to ModularServer.launch 2. Parameter to ModularServer()
3. Environment var PORT 4. Default value (8521)

model_params: A dict of model parameters

settings

Create a new visualization server with the given elements.

reset_model()

Reinstantiate the model object, using the current parameters.

render_model()

Turn the current state of the model into a dictionary of visualizations

launch(port=None, open_browser=True)
Run the app.

72 Chapter 4. Mesa Packages

https://www.christian-schneider.net/CrossSiteWebSocketHijacking.html
https://devcenter.heroku.com/articles/websocket-security

Mesa Documentation, Release .1

4.6.8.3 Text Visualization

Base classes for ASCII-only visualizations of a model. These are useful for quick debugging, and can readily be
rendered in an IPython Notebook or via text alone in a browser window.

Classes:

TextVisualization: Class meant to wrap around a Model object and render it in some way using Elements, which are
stored in a list and rendered in that order. Each element, in turn, renders a particular piece of information as text.

ASCIIElement: Parent class for all other ASCII elements. render() returns its representative string, which can be
printed via the overloaded __str__ method.

TextData: Uses getattr to get the value of a particular property of a model and prints it, along with its name.

TextGrid: Prints a grid, assuming that the value of each cell maps to exactly one ASCII character via a converter
method. This (as opposed to a dictionary) is used so as to allow the method to access Agent internals, as well as to
potentially render a cell based on several values (e.g. an Agent grid and a Patch value grid).

class TextVisualization(model)
ASCII-Only visualization of a model.

Properties:

model: The underlying model object to be visualized. elements: List of visualization elements, which
will be rendered

in the order they are added.

Create a new Text Visualization object.

render()

Render all the text elements, in order.

step()

Advance the model by a step and print the results.

class ASCIIElement

Base class for all TextElements to render.

Methods:
render: ‘Renders’ some data into ASCII and returns. __str__: Displays render() by default.

render()

Render the element as text.

class TextData(model, var_name)
Prints the value of one particular variable from the base model.

Create a new data renderer.

render()

Render the element as text.

class TextGrid(grid, converter)
Class for creating an ASCII visualization of a basic grid object.

By default, assume that each cell is represented by one character, and that empty cells are rendered as ‘ ‘ charac-
ters. When printed, the TextGrid results in a width x height grid of ascii characters.

Properties:
grid: The underlying grid object.

4.6. APIs 73

Mesa Documentation, Release .1

Create a new ASCII grid visualization.

Args:
grid: The underlying Grid object. converter: function for converting the content of each cell

to ascii. Takes the contents of a cell, and returns a single character.

render()

What to show when printed.

4.6.8.4 Modules

Container for all built-in visualization modules.

4.6.8.4.1 Modular Canvas Rendering

Module for visualizing model objects in grid cells.

class CanvasGrid(portrayal_method, grid_width, grid_height, canvas_width=500, canvas_height=500)
A CanvasGrid object uses a user-provided portrayal method to generate a portrayal for each object. A portrayal
is a JSON-ready dictionary which tells the relevant JavaScript code (GridDraw.js) where to draw what shape.

The render method returns a dictionary, keyed on layers, with values as lists of portrayals to draw. Portray-
als themselves are generated by the user-provided portrayal_method, which accepts an object as an input and
produces a portrayal of it.

A portrayal as a dictionary with the following structure:
“x”, “y”: Coordinates for the cell in which the object is placed. “Shape”: Can be either “circle”, “rect”,
“arrowHead” or a custom image.

For Circles:

“r”: The radius, defined as a fraction of cell size. r=1 will
fill the entire cell.

“xAlign”, “yAlign”: Alignment of the circle within the cell.
Defaults to 0.5 (center).

For Rectangles:

“w”, “h”: The width and height of the rectangle, which are in
fractions of cell width and height.

“xAlign”, “yAlign”: Alignment of the rectangle within the
cell. Defaults to 0.5 (center).

For arrowHead:

“scale”: Proportion scaling as a fraction of cell size. “heading_x”: represents x direction
unit vector. “heading_y”: represents y direction unit vector.

For an image:
The image must be placed in the same directory from which the server is launched. An
image has the attributes “x”, “y”, “scale”, “text” and “text_color”.

“Color”: The color to draw the shape in; needs to be a valid HTML
color, e.g.”Red” or “#AA08F8”

74 Chapter 4. Mesa Packages

Mesa Documentation, Release .1

“Filled”: either “true” or “false”, and determines whether the shape is
filled or not.

“Layer”: Layer number of 0 or above; higher-numbered layers are drawn
above lower-numbered layers.

“text”: The text to be inscribed inside the Shape. Normally useful for
showing the unique_id of the agent.

“text_color”: The color to draw the inscribed text. Should be given in
conjunction of “text” property.

Attributes:

portrayal_method: Function which generates portrayals from objects, as
described above.

grid_height, grid_width: Size of the grid to visualize, in cells. canvas_height, canvas_width: Size, in
pixels, of the grid visualization

to draw on the client.

template: “canvas_module.html” stores the module’s HTML template.

Instantiate a new CanvasGrid.

Args:

portrayal_method: function to convert each object on the grid to
a portrayal, as described above.

grid_width, grid_height: Size of the grid, in cells. canvas_height, canvas_width: Size of the canvas to draw
in the

client, in pixels. (default: 500x500)

render(model)
Build visualization data from a model object.

Args:
model: A model object

Returns:
A JSON-ready object.

4.6.8.4.2 Chart Module

Module for drawing live-updating line charts using Charts.js

class ChartModule(series, canvas_height=200, canvas_width=500, data_collector_name='datacollector')

Each chart can visualize one or more model-level series as lines
with the data value on the Y axis and the step number as the X axis.

At the moment, each call to the render method returns a list of the most recent values of each series.

Attributes:

series: A list of dictionaries containing information on series to
plot. Each dictionary must contain (at least) the “Label” and “Color” keys. The “Label” value must
correspond to a model-level series collected by the model’s DataCollector, and “Color” must have a
valid HTML color.

4.6. APIs 75

Mesa Documentation, Release .1

canvas_height, canvas_width: The width and height to draw the chart on
the page, in pixels. Default to 200 x 500

data_collector_name: Name of the DataCollector object in the model to
retrieve data from.

template: “chart_module.html” stores the HTML template for the module.

Example:

schelling_chart = ChartModule([{“Label”: “happy”, “Color”: “Black”}],
data_collector_name=”datacollector”)

TODO:
Have it be able to handle agent-level variables as well.

More Pythonic customization; in particular, have both series-level and chart-level options settable in
Python, and passed to the front-end the same way that “Color” is currently.

Create a new line chart visualization.

Args:

series: A list of dictionaries containing series names and
HTML colors to chart them in, e.g. [{“Label”: “happy”, “Color”: “Black”},]

canvas_height, canvas_width: Size in pixels of the chart to draw. data_collector_name: Name of the Dat-
aCollector to use.

render(model)
Build visualization data from a model object.

Args:
model: A model object

Returns:
A JSON-ready object.

4.7 “How To” Mesa Packages

The Mesa core functionality is just a subset of what we believe researchers creating Agent Based Models (ABMs)
will use. We designed Mesa to be extensible, so that individuals from various domains can build, maintain, and share
their own packages that work with Mesa in pursuit of “unifying algorithmic theories of the relation between adaptive
behavior and system complexity (Volker Grimm et al 2005).”

DRY Principle

This decoupling of code to create building blocks is a best practice in software engineering. Specifically, it exercises
the DRY principle (or don’t repeat yourself) (Hunt and Thomas 2010). The creators of Mesa designed Mesa in order
for this principle to be exercised in the development of agent-based models (ABMs). For example, a group of health
experts may create a library of human interactions on top of core Mesa. That library then is used by other health experts.
So, those health experts don’t have to rewrite the same basic behaviors.

Benefits to Scientists

Besides a best practice of the software engineering community, there are other benefits for the scientific community.

1. Reproducibility and Replicability. Decoupled shared packages also allows for reproducibility and replicability.
Having a package that is shared allows others to reproduce the model results. It also allows others to apply the
model to similar phenomenon and replicate the results over a diversity of data. Both are essential part of the
scientific method (Leek and Peng 2015).

76 Chapter 4. Mesa Packages

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Mesa Documentation, Release .1

2. Accepted truths. Once results are reproduced and replicated, a library could be considered an accepted truth,
meaning that the community agrees the library does what the library intends to do and the library can be trusted
to do this. Part of the idea behind ‘accepted truths’ is that subject matter experts are the ones that write and
maintain the library.

3. Building blocks. Think of libraries like Legos. The researcher can borrow a piece from here or there to pull
together the base of their model, so they can focus on the value add that they bring. For example, someone might
pull from a human interactions library and a decision-making library and combine the two to look at how human
cognitive function effects the physical spread of disease.

Mesa and Mesa Packages

Because of the possibilities of nuanced libraries, few things will actually make it into core Mesa. Mesa is intended to
only include core functionality that everyone uses. However, it is not impossible that something written on the outside
is brought into core at a later date if the value to everyone is proven through adoption.

An example that is analogous to Mesa and Mesa packages is Django and Django Packages. Django is a web framework
that allows you to build a website in Python, but there are lots of things besides a basic website that you might want.
For example, you might want authentication functionality. It would be inefficient for everyone to write their own
authentication functionality, so one person writes it (or a group of people). They share it with the world and then many
people can use it.

This process isn’t perfect. Just because you write something doesn’t mean people are going to use it. Sometimes two
different packages will be created that do similar things, but one of them does it better or is easier to use. That is the
one that will get more adoption. In the world of academia, often researchers hold on to their content until they are
ready to publish it. In the world of open source software, this can backfire. The sooner you open source something the
more likely it will be a success, because you will build consensus and engagement. Another thing that can happen is
that while you are working on perfecting it, someone else is building in the open and establishes the audience you were
looking for. So, don’t be afraid to start working directly out in the open and then release it to the world.

What is in this doc

There are two sections in this documentation. The first is the User Guide, which is aimed at users of packages. The
section is a package development guide, which is aimed at those who want to develop packages. Without further ado,
let’s get started!

4.7.1 User Guide

• Note: MESA does not endorse or verify any of the code shared through MESA packages. This is left to the
domain experts of the community that created the code.*

Step 1: Select a package

Currently, a central list of compatible packages is located on the Mesa Wiki Packages Page.

Step 2: Establish an environment

Create a virtual environment for the ABM you are building. The purpose of a virtual environment is to isolate the
packages for your project from other projects. This is helpful when you need to use two different versions of a package
or if you are running one version in production but want to test out another version. You can do with either virtualenv
or Anaconda.

• Why a virtual environment

• Virtualenv and Virtualenv Wrapper

• Creating a virtual environment with Anaconda

Step 3: Install the packages

4.7. “How To” Mesa Packages 77

https://www.djangoproject.com/
https://djangopackages.org/
https://github.com/projectmesa/mesa/wiki/Mesa-Packages
https://realpython.com/blog/python/python-virtual-environments-a-primer/#why-the-need-for-virtual-environments
http://docs.python-guide.org/en/latest/#python-development-environments
https://conda.io/docs/user-guide/tasks/manage-environments.html

Mesa Documentation, Release .1

Install the package(s) into your environment via pip/conda or GitHub. If the package is a mature package that is hosted
in the Python package repository, then you can install it just like you did Mesa:

pip install package_name

However, sometimes it takes a little bit for projects to reach that level of maturity. In that case to use the library, you
would install from GitHub (or other code repository) with something like the following:

pip install https://github.com/<path to project>

The commands above should also work with Anaconda, just replace the pip with conda.

4.7.2 Package Development: A “How-to Guide”

The purpose of this section is help you understand, setup, and distribute your Mesa package as quickly as possible. A
Mesa package is just a Python package or repo. We just call it a Mesa package, because we are talking about a Python
package in the context of Mesa. These instructions assume that you are a little familiar with development, but that you
have little knowledge of the packaging process.

There are two ways to share a package:

1. Via GitHub or other service (e.g. GitLab, Bitbucket, etc.)

2. Via PyPI, the Python package manager

Sharing a package via PyPI make it easier to install for users but is more overhead for whomever is maintaining it.
However, if you are truly intending for a wider/longer-term adoption, then PyPI should be your goal.

Most likely you created an ABM that has the code that you want to share in it, which is what the steps below describe.

Sharing your package

1. Layout a new file structure to move the code into and then make sure it is callable from Mesa, in a simple, easy
to understand way. For example, from example_package import foo. See Creating the Scaffolding.

2. Pick a name.

3. Create a repo on GitHub.

• Enter the name of the repo.

• Select a license (not sure– click the blue ‘i’ next to the i for a great run down of licenses). We recommend
something permissive Apache 2.0, BSD, or MIT so that others can freely adopt it. The more permissive
the more likely it will gain followers and adoption. If you do not include a license, it is our belief that you
will retain all rights, which means that people can’t use your project, but it should be noted that we are also
not lawyers.

• Create a readme.md file (this contains a description of the package) see an example: Bilateral Shapley

4. Clone the repo to your computer.

5. Copy your code directory into the repo that you cloned one your computer.

6. Add a requirements.txt file, which lets people know which external Python packages are needed to run the code
in your repo. To create a file, run: pip freeze > requirements.txt. Note, if you are running Anaconda,
you will need to install pip first: conda install pip.

7. git add all the files to the repo, which means the repo starts to track the files. Then git commit the files with
a meaningful message. To learn more about this see: Saving changes. Finally, you will want to git push all
your changes to GitHub, see: Git Push.

78 Chapter 4. Mesa Packages

https://python-packaging.readthedocs.io/en/latest/minimal.html#creating-the-scaffolding
https://python-packaging.readthedocs.io/en/latest/minimal.html#picking-a-name
https://help.github.com/articles/create-a-repo/
https://github.com/tpike3/bilateralshapley/blob/master/README.md
https://help.github.com/articles/cloning-a-repository/#platform-linux
https://www.atlassian.com/git/tutorials/saving-changes
https://help.github.com/articles/pushing-to-a-remote/

Mesa Documentation, Release .1

8. Let people know about your package on the MESA Wiki Page and share it on the email list. In the future, we
will create more of a directory, but at this point we are not there yet.

From this point, someone can clone your repo and then add your repo to their Python path and use it in their project.
However, if you want to take your package to the next level, you will want to add more structure to your package and
share it on PyPI.

Next Level: PyPI

You want to do even more. The authoritative guide for python package development is through the Python Packaging
User Guide. This will take you through the entire process necessary for getting your package on the Python Package
Index.

The Python Package Index is the main repository of software for Python Packages and following this guide will ensure
your code and documentation meets the standards for distribution across the Python community.

4.8 References

Grimm, Volker, Eloy Revilla, Uta Berger, Florian Jeltsch, Wolf M. Mooij, Steven F. Railsback, Hans-Hermann Thulke,
Jacob Weiner, Thorsten Wiegand, and Donald L. DeAngelis. 2005. “Pattern-Oriented Modeling of Agent Based Com-
plex Systems: Lessons from Ecology.” American Association for the Advancement of Science 310 (5750): 987–91.
doi:10.1126/science.1116681.

Hunt, Andrew, and David Thomas. 2010. The Pragmatic Programmer: From Journeyman to Master. Reading, Mas-
sachusetts: Addison-Wesley.

Leek, Jeffrey T., and Roger D. Peng. 2015. “Reproducible Research Can Still Be Wrong: Adopting a Prevention
Approach.” Proceedings of the National Academy of Sciences 112 (6): 1645–46. doi:10.1073/pnas.1421412111.

4.8. References 79

https://github.com/projectmesa/mesa/wiki
https://groups.google.com/forum/#!forum/projectmesa
https://packaging.python.org/
https://packaging.python.org/
https://pypi.org

Mesa Documentation, Release .1

80 Chapter 4. Mesa Packages

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

81

Mesa Documentation, Release .1

82 Chapter 5. Indices and tables

PYTHON MODULE INDEX

b
batchrunner, 66

d
datacollection, 64

v
visualization.__init__, 69
visualization.ModularVisualization, 69
visualization.modules.__init__, 74
visualization.modules.CanvasGridVisualization,

74
visualization.modules.ChartVisualization, 75
visualization.TextVisualization, 72

83

Mesa Documentation, Release .1

84 Python Module Index

INDEX

A
accept_tuple_argument() (in module mesa.space), 51
add() (BaseScheduler method), 48
add() (RandomActivation method), 49
add() (RandomActivationByType method), 50
add() (SimultaneousActivation method), 49
add() (StagedActivation method), 50
add_table_row() (DataCollector method), 66
Agent (class in mesa), 47
agent_buffer() (BaseScheduler method), 48
agent_buffer() (RandomActivation method), 49
agent_buffer() (RandomActivationByType method),

51
agent_buffer() (SimultaneousActivation method), 49
agent_buffer() (StagedActivation method), 50
ASCIIElement (class in visualization.TextVisualization),

73

B
BaseScheduler (class in mesa.time), 48
batch_run() (in module batchrunner), 66
batchrunner

module, 66
BatchRunner (class in batchrunner), 68
BatchRunnerMP (class in batchrunner), 69

C
CanvasGrid (class in visualiza-

tion.modules.CanvasGridVisualization),
74

ChartModule (class in visualiza-
tion.modules.ChartVisualization), 75

check_origin() (SocketHandler method), 71
collect() (DataCollector method), 66
collect_agent_vars() (FixedBatchRunner method),

68
collect_model_vars() (FixedBatchRunner method),

68
ContinuousSpace (class in mesa.space), 63
coord_iter() (HexGrid method), 61
coord_iter() (HexMultiGrid method), 59
coord_iter() (HexSingleGrid method), 57

coord_iter() (MultiGrid method), 54
coord_iter() (SingleGrid method), 52

D
datacollection

module, 64
DataCollector (class in datacollection), 65
default_val() (HexGrid static method), 61
default_val() (HexMultiGrid static method), 59
default_val() (HexSingleGrid static method), 57
default_val() (MultiGrid static method), 54
default_val() (NetworkGrid static method), 64
default_val() (SingleGrid static method), 52

E
exists_empty_cells() (HexGrid method), 61
exists_empty_cells() (HexMultiGrid method), 59
exists_empty_cells() (HexSingleGrid method), 57
exists_empty_cells() (MultiGrid method), 54
exists_empty_cells() (SingleGrid method), 52

F
find_empty() (HexGrid method), 61
find_empty() (HexMultiGrid method), 59
find_empty() (HexSingleGrid method), 57
find_empty() (MultiGrid method), 54
find_empty() (SingleGrid method), 52
FixedBatchRunner (class in batchrunner), 67

G
get_agent_count() (BaseScheduler method), 48
get_agent_count() (RandomActivation method), 49
get_agent_count() (RandomActivationByType

method), 51
get_agent_count() (SimultaneousActivation method),

49
get_agent_count() (StagedActivation method), 50
get_agent_vars_dataframe() (DataCollector

method), 66
get_agent_vars_dataframe() (FixedBatchRunner

method), 68
get_all_cell_contents() (NetworkGrid method), 64

85

Mesa Documentation, Release .1

get_cell_list_contents() (NetworkGrid method),
64

get_collector_agents() (FixedBatchRunner
method), 68

get_collector_model() (FixedBatchRunner method),
68

get_distance() (ContinuousSpace method), 63
get_heading() (ContinuousSpace method), 63
get_model_vars_dataframe() (DataCollector

method), 66
get_model_vars_dataframe() (FixedBatchRunner

method), 68
get_neighborhood() (HexGrid method), 61
get_neighborhood() (HexMultiGrid method), 59
get_neighborhood() (HexSingleGrid method), 57
get_neighborhood() (MultiGrid method), 54
get_neighborhood() (SingleGrid method), 52
get_neighbors() (ContinuousSpace method), 63
get_neighbors() (HexGrid method), 61
get_neighbors() (HexMultiGrid method), 59
get_neighbors() (HexSingleGrid method), 57
get_neighbors() (MultiGrid method), 55
get_neighbors() (NetworkGrid method), 64
get_neighbors() (SingleGrid method), 52
get_table_dataframe() (DataCollector method), 66
get_type_count() (RandomActivationByType method),

51

H
HexGrid (class in mesa.space), 60
HexMultiGrid (class in mesa.space), 58
HexSingleGrid (class in mesa.space), 56

I
is_cell_empty() (HexGrid method), 61
is_cell_empty() (HexMultiGrid method), 59
is_cell_empty() (HexSingleGrid method), 57
is_cell_empty() (MultiGrid method), 55
is_cell_empty() (NetworkGrid method), 64
is_cell_empty() (SingleGrid method), 53
iter_cell_list_contents() (NetworkGrid method),

64
iter_neighborhood() (HexGrid method), 61
iter_neighborhood() (HexMultiGrid method), 59
iter_neighborhood() (HexSingleGrid method), 57
iter_neighborhood() (MultiGrid method), 55
iter_neighborhood() (SingleGrid method), 53
iter_neighbors() (HexGrid method), 62
iter_neighbors() (HexMultiGrid method), 60
iter_neighbors() (HexSingleGrid method), 58
iter_neighbors() (MultiGrid method), 55
iter_neighbors() (SingleGrid method), 53

L
launch() (ModularServer method), 72

M
mesa.space

module, 51
mesa.time

module, 48
Model (class in mesa), 47
ModularServer (class in visualiza-

tion.ModularVisualization), 72
module

batchrunner, 66
datacollection, 64
mesa.space, 51
mesa.time, 48
visualization.__init__, 69
visualization.ModularVisualization, 69
visualization.modules.__init__, 74
visualization.modules.CanvasGridVisualization,

74
visualization.modules.ChartVisualization,

75
visualization.TextVisualization, 72

move_agent() (ContinuousSpace method), 63
move_agent() (HexGrid method), 62
move_agent() (HexMultiGrid method), 60
move_agent() (HexSingleGrid method), 58
move_agent() (MultiGrid method), 56
move_agent() (NetworkGrid method), 64
move_agent() (SingleGrid method), 53
move_to_empty() (HexGrid method), 62
move_to_empty() (HexMultiGrid method), 60
move_to_empty() (HexSingleGrid method), 58
move_to_empty() (MultiGrid method), 56
move_to_empty() (SingleGrid method), 53
MultiGrid (class in mesa.space), 54

N
neighbor_iter() (HexGrid method), 62
neighbor_iter() (HexMultiGrid method), 60
neighbor_iter() (HexSingleGrid method), 58
neighbor_iter() (MultiGrid method), 56
neighbor_iter() (SingleGrid method), 54
NetworkGrid (class in mesa.space), 64
next_id() (Model method), 47

O
on_message() (SocketHandler method), 72
open() (SocketHandler method), 71
out_of_bounds() (ContinuousSpace method), 64
out_of_bounds() (HexGrid method), 62
out_of_bounds() (HexMultiGrid method), 60

86 Index

Mesa Documentation, Release .1

out_of_bounds() (HexSingleGrid method), 58
out_of_bounds() (MultiGrid method), 56
out_of_bounds() (SingleGrid method), 54

P
PageHandler (class in visualiza-

tion.ModularVisualization), 71
ParameterError, 67
place_agent() (ContinuousSpace method), 63
place_agent() (HexGrid method), 62
place_agent() (HexMultiGrid method), 60
place_agent() (HexSingleGrid method), 58
place_agent() (MultiGrid method), 54
place_agent() (NetworkGrid method), 64
place_agent() (SingleGrid method), 52
position_agent() (HexGrid method), 62
position_agent() (HexSingleGrid method), 58
position_agent() (SingleGrid method), 51

R
RandomActivation (class in mesa.time), 48
RandomActivationByType (class in mesa.time), 50
remove() (BaseScheduler method), 48
remove() (RandomActivation method), 49
remove() (RandomActivationByType method), 50
remove() (SimultaneousActivation method), 49
remove() (StagedActivation method), 50
remove_agent() (ContinuousSpace method), 63
remove_agent() (HexGrid method), 62
remove_agent() (HexMultiGrid method), 60
remove_agent() (HexSingleGrid method), 58
remove_agent() (MultiGrid method), 54
remove_agent() (NetworkGrid method), 64
remove_agent() (SingleGrid method), 52
render() (ASCIIElement method), 73
render() (CanvasGrid method), 75
render() (ChartModule method), 76
render() (TextData method), 73
render() (TextGrid method), 74
render() (TextVisualization method), 73
render() (VisualizationElement method), 71
render_model() (ModularServer method), 72
reset_model() (ModularServer method), 72
reset_randomizer() (Model method), 48
run_all() (BatchRunnerMP method), 69
run_all() (FixedBatchRunner method), 68
run_model() (FixedBatchRunner method), 68
run_model() (Model method), 47

S
settings (ModularServer attribute), 72
SimultaneousActivation (class in mesa.time), 49
SingleGrid (class in mesa.space), 51

SocketHandler (class in visualiza-
tion.ModularVisualization), 71

StagedActivation (class in mesa.time), 49
step() (Agent method), 47
step() (BaseScheduler method), 48
step() (Model method), 47
step() (RandomActivation method), 49
step() (RandomActivationByType method), 50
step() (SimultaneousActivation method), 49
step() (StagedActivation method), 50
step() (TextVisualization method), 73
step_type() (RandomActivationByType method), 51
swap_pos() (HexGrid method), 62
swap_pos() (HexMultiGrid method), 60
swap_pos() (HexSingleGrid method), 58
swap_pos() (MultiGrid method), 56
swap_pos() (SingleGrid method), 54

T
TextData (class in visualization.TextVisualization), 73
TextElement (class in visualiza-

tion.ModularVisualization), 71
TextGrid (class in visualization.TextVisualization), 73
TextVisualization (class in visualiza-

tion.TextVisualization), 73
torus_adj() (ContinuousSpace method), 64
torus_adj() (HexGrid method), 63
torus_adj() (HexMultiGrid method), 60
torus_adj() (HexSingleGrid method), 58
torus_adj() (MultiGrid method), 56
torus_adj() (SingleGrid method), 54

V
VariableParameterError, 67
visualization.__init__

module, 69
visualization.ModularVisualization

module, 69
visualization.modules.__init__

module, 74
visualization.modules.CanvasGridVisualization

module, 74
visualization.modules.ChartVisualization

module, 75
visualization.TextVisualization

module, 72
VisualizationElement (class in visualiza-

tion.ModularVisualization), 71

Index 87

	Features
	Using Mesa
	Contributing back to Mesa
	Mesa Packages
	Mesa Overview
	Mesa Modules
	Modeling modules
	Analysis modules
	Visualization modules

	Introductory Tutorial
	Tutorial Description
	Model Description
	Tutorial Setup

	Building the Sample Model
	Create New Folder/Directory
	Creating Model With Jupyter Notebook
	Creating Model With Script File (IDE, Text Editor, Colab, etc.)

	Import Dependencies
	Create Agent
	Create Model
	Adding the Scheduler
	Running the Model
	Exercise

	Agent Step
	Running your first model
	Adding space
	Collecting Data
	Batch Run
	Happy Modeling!

	Advanced Tutorial
	Adding visualization
	Grid Visualization
	Changing the agents
	Adding a chart

	Building your own visualization component
	Client-Side Code
	Server-Side Code

	Happy Modeling!

	Best Practices
	Model Layout
	Randomization

	Useful Snippets
	Models with Discrete Time
	Using `numpy.random`
	Using multi-process `batch_run` on Windows

	APIs
	Base Classes
	Mesa Time Module
	Mesa Space Module
	Mesa Data Collection Module
	Batchrunner
	Parameters
	Returns
	Visualization
	Mesa Visualization Module
	ModularServer
	Text Visualization
	Modules
	Modular Canvas Rendering
	Chart Module

	“How To” Mesa Packages
	User Guide
	Package Development: A “How-to Guide”

	References

	Indices and tables
	Python Module Index
	Index

